Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Diophantine inequalities with power sums

Amedeo Scremin — 2007

Journal de Théorie des Nombres de Bordeaux

The ring of power sums is formed by complex functions on of the form α ( n ) = b 1 c 1 n + b 2 c 2 n + ... + b h c h n , for some b i ¯ and c i . Let F ( x , y ) ¯ [ x , y ] be absolutely irreducible, monic and of degree at least 2 in y . We consider Diophantine inequalities of the form | F ( α ( n ) , y ) | < | F y ( α ( n ) , y ) | · | α ( n ) | - ε and show that all the solutions ( n , y ) × have y parametrized by some power sums in a finite set. As a consequence, we prove that the equation F ( α ( n ) , y ) = f ( n ) , with f [ x ] not constant, F monic in y and α not constant, has only finitely many solutions....

Page 1

Download Results (CSV)