Number of models of theories with many types
We make some observations relating the theory of finite-dimensional differential algebraic groups (the ∂₀-groups of [2]) to the Galois theory of linear differential equations. Given a differential field (K,∂), we exhibit a surjective functor from (absolutely) split (in the sense of Buium) ∂₀-groups G over K to Picard-Vessiot extensions L of K, such that G is K-split iff L = K. In fact we give a generalization to "K-good" ∂₀-groups. We also point out that the "Katz group" (a certain linear algebraic...
We give a model-theoretic interpretation of a result by Campana and Fujiki on the algebraicity of certain spaces of cycles on compact complex spaces. The model-theoretic interpretation is in the language of canonical bases, and says that if b,c are tuples in an elementary extension 𝓐* of the structure 𝓐 of compact complex manifolds, and b is the canonical base of tp(c/b), then tp(b/c) is internal to the sort (ℙ¹)*. The Zilber dichotomy in 𝓐* follows immediately (a type of U-rank 1 is locally...
A subset X of a group G is called left genericif finitely many left translates of X cover G. Our main result is that if G is a definably compact group in an o-minimal structure and a definable X ⊆ G is not right generic then its complement is left generic. Among our additional results are (i) a new condition equivalent to definable compactness, (ii) the existence of a finitely additive invariant measure on definable sets in a definably compact group G in the case where G = *H...
We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups G definable in an o-minimal expansion of a real closed field. With a rather strong definition of ind-definable semisimple subgroup, we prove that G has a unique maximal ind-definable semisimple subgroup S, up to conjugacy, and that G = R· S where R is the solvable radical of G. We also prove that any semisimple subalgebra of the Lie algebra of G corresponds to a unique ind-definable semisimple...
We study forking, Lascar strong types, Keisler measures and definable groups, under an assumption of NIP (not the independence property), continuing aspects of the paper [16]. Among key results are (i) if does not fork over then the Lascar strong type of over coincides with the compact strong type of over and any global nonforking extension of is Borel definable over , (ii) analogous statements for Keisler measures and definable groups, including the fact that for definably amenable,...
We study the action of G = SL(2,ℝ), viewed as a group definable in the structure M = (ℝ,+,×), on its type space . We identify a minimal closed G-flow I and an idempotent r ∈ I (with respect to the Ellis semigroup structure * on ). We also show that the “Ellis group” (r*I,*) is nontrivial, in fact it is the group with two elements, yielding a negative answer to a question of Newelski.
Page 1