Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Characterizations of groups generated by Kronecker sets

András Biró — 2007

Journal de Théorie des Nombres de Bordeaux

In recent years, starting with the paper [B-D-S], we have investigated the possibility of characterizing countable subgroups of the torus T = R / Z by subsets of Z . Here we consider new types of subgroups: let K T be a Kronecker set (a compact set on which every continuous function f : K T can be uniformly approximated by characters of T ), and G the group generated by K . We prove (Theorem 1) that G can be characterized by a subset of Z 2 (instead of a subset of Z ). If K is finite, Theorem 1 implies our earlier result...

Page 1

Download Results (CSV)