On the structural result on normal plane maps
We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by . This improves a recent bound , D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.