Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Gauge theoretical methods in the classification of non-Kählerian surfaces

Andrei Teleman — 2009

Banach Center Publications

The classification of class VII surfaces is a very difficult classical problem in complex geometry. It is considered by experts to be the most important gap in the Enriques-Kodaira classification table for complex surfaces. The standard conjecture concerning this problem states that any minimal class VII surface with b₂ > 0 has b₂ curves. By the results of [Ka1]-[Ka3], [Na1]-[Na3], [DOT], [OT] this conjecture (if true) would solve the classification problem completely. We explain a new approach...

Invariant connections and invariant holomorphic bundles on homogeneous manifolds

Indranil BiswasAndrei Teleman — 2014

Open Mathematics

Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when...

Symmetric theta divisors of Klein surfaces

Christian OkonekAndrei Teleman — 2012

Open Mathematics

This is a slightly expanded version of the talk given by the first author at the conference Instantons in complex geometry, at the Steklov Institute in Moscow. The purpose of this talk was to explain the algebraic results of our paper Abelian Yang-Mills theory on Real tori and Theta divisors of Klein surfaces. In this paper we compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles...

Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent BruasseAndrei Teleman — 2005

Annales de l’institut Fourier

We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....

Page 1

Download Results (CSV)