Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent Bruasse[1]; Andrei Teleman

  • [1] IML, CNRS UPR 9016, 163 avenue de Luminy, 13288 Marseille cedex 09 (France), CMI, LATP UMR 6632, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13 (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 1017-1053
  • ISSN: 0373-0956

Abstract

top
We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object.

How to cite

top

Bruasse, Laurent, and Teleman, Andrei. "Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry." Annales de l’institut Fourier 55.3 (2005): 1017-1053. <http://eudml.org/doc/116203>.

@article{Bruasse2005,
abstract = {We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object.},
affiliation = {IML, CNRS UPR 9016, 163 avenue de Luminy, 13288 Marseille cedex 09 (France), CMI, LATP UMR 6632, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13 (France)},
author = {Bruasse, Laurent, Teleman, Andrei},
journal = {Annales de l’institut Fourier},
keywords = {symplectic actions; Hamiltonian actions; stability; Harder Narasimhan filtration; Shatz stratification; gauge theory; moduli problems},
language = {eng},
number = {3},
pages = {1017-1053},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry},
url = {http://eudml.org/doc/116203},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Bruasse, Laurent
AU - Teleman, Andrei
TI - Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 1017
EP - 1053
AB - We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object.
LA - eng
KW - symplectic actions; Hamiltonian actions; stability; Harder Narasimhan filtration; Shatz stratification; gauge theory; moduli problems
UR - http://eudml.org/doc/116203
ER -

References

top
  1. S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Diff. Geom. 33 (1991), 169-213 Zbl0697.32014MR1085139
  2. L. Bruasse, Harder-Narasimhan filtration on non Kähler manifolds, Int. Journal of Maths 12 (2001), 579-594 Zbl1111.32303MR1843867
  3. L. Bruasse, Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans-torsion, Ann. Inst. Fourier 53 (2003), 539-562 Zbl1114.32010MR1990006
  4. L. Bruasse, Optimal destabilizing vectors in some gauge theoretical moduli problems, (2004) Zbl1112.32008
  5. L. Bruasse, A. Teleman, Harder-Narasimhan filtrations and optimal destabilizing vectors in gauge theory, (2003) Zbl1093.32009
  6. G. Harder, M. Narasimhan, On the cohomology groups of moduli spaces, Math. Ann. 212 (1975), 215-248 Zbl0324.14006MR364254
  7. P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662 Zbl0728.32010MR1103041
  8. P. Heinzner, A. Huckleberry, Analytic Hilbert Quotient, 37 (1999), 309-349, MSRI, Cambridge University Press Zbl0959.32013
  9. P. Heinzner, F. Loose, Reduction of complex Hamiltonian G-spaces, Geometric and Functional Analysis 4 (1994), 288-297 Zbl0816.53018MR1274117
  10. N. J. Hitchin, A. Karlhede, U. Lindström, M. Rouk, Hyperkähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987), 535-589 Zbl0612.53043MR877637
  11. F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31 (1984) Zbl0553.14020MR766741
  12. M. Lübke, A. Teleman, The universal Kobayashi-Hitchin correspondance, (2003) Zbl1103.53014
  13. M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), 317-333 Zbl0438.14015MR615853
  14. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, (1982), Springer-Verlag Zbl0504.14008MR1304906
  15. I. Mundet i Riera, A Hitchin-Kobayashi correspondence for Kähler fibrations, J. reine angew. Maths 528 (2000), 41-80 Zbl1002.53057MR1801657
  16. Ch. Okonek, A. Schmitt, A. Teleman, Master spaces for stable pairs, Topology 38 (1999), 117-139 Zbl0981.14007MR1644079
  17. Ch. Okonek, A. Teleman, Gauge theoretical equivariant Gromov-Witten invariants and the full Seiberg-Witten invariants of ruled surfaces, Comm. Math. Phys. 227 (2002), 551-585 Zbl1037.57025MR1910831
  18. P. Orlik, Seifert Manifold, 291 (1972), Springer Verlag Zbl0263.57001MR426001
  19. S. Ramanan, A. Ramanathan, Some remarks on the instability flag, Tôhoku Math. Journ. 36 (1984), 269-291 Zbl0567.14027MR742599
  20. S. Shatz, The decomposition and specialization of algebraic families of vector bundles, Composito. Math. 35 (1977), 163-187 Zbl0371.14010MR498573
  21. P. Slodowy, Die Theorie der optimalen einparameteruntergruppen für instabile vektoren, Algebraische Transformationsgruppen und Invariantentheorie 13 (1989), 115-131, Birkhäuser Zbl0753.14006
  22. A. Teleman, Analytic stability, symplectic stability in non-algebraic complex geometry, (2003) Zbl1089.53058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.