The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study sub-Riemannian (Carnot-Caratheodory) metrics defined by
noninvolutive distributions on real-analytic Riemannian manifolds.
We establish a connection between regularity properties of these
metrics and the lack of length minimizing abnormal geodesics.
Utilizing the results of the previous study of abnormal length
minimizers accomplished by the authors in [Annales IHP. , p. 635-690] we describe in this
paper two classes of the germs of distributions (called
2-generating and medium fat) such...
Download Results (CSV)