Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity
Andrei A. Agrachev; Andrei V. Sarychev
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 4, page 377-403
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAgrachev, Andrei A., and Sarychev, Andrei V.. "Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity." ESAIM: Control, Optimisation and Calculus of Variations 4 (2010): 377-403. <http://eudml.org/doc/197295>.
@article{Agrachev2010,
abstract = {
We study sub-Riemannian (Carnot-Caratheodory) metrics defined by
noninvolutive distributions on real-analytic Riemannian manifolds.
We establish a connection between regularity properties of these
metrics and the lack of length minimizing abnormal geodesics.
Utilizing the results of the previous study of abnormal length
minimizers accomplished by the authors in [Annales IHP. Analyse
nonlinéaire 13, p. 635-690] we describe in this
paper two classes of the germs of distributions (called
2-generating and medium fat) such that the corresponding
sub-Riemannian metrics are subanalytic. To characterize these
classes of distributions we determine the dimensions of the
manifolds on which generic germs of distributions of given rank
are respectively 2-generating or medium fat.
},
author = {Agrachev, Andrei A., Sarychev, Andrei V.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Sub-Riemannian metrics; subanalitycity; abnormal length minimizers.; abnormal length minimizer; Carnot-Carathéodory metrics; noninvolutive distributions; abnormal geodesics; sub-Riemannian metrics; subanalytic},
language = {eng},
month = {3},
pages = {377-403},
publisher = {EDP Sciences},
title = {Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity},
url = {http://eudml.org/doc/197295},
volume = {4},
year = {2010},
}
TY - JOUR
AU - Agrachev, Andrei A.
AU - Sarychev, Andrei V.
TI - Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 377
EP - 403
AB -
We study sub-Riemannian (Carnot-Caratheodory) metrics defined by
noninvolutive distributions on real-analytic Riemannian manifolds.
We establish a connection between regularity properties of these
metrics and the lack of length minimizing abnormal geodesics.
Utilizing the results of the previous study of abnormal length
minimizers accomplished by the authors in [Annales IHP. Analyse
nonlinéaire 13, p. 635-690] we describe in this
paper two classes of the germs of distributions (called
2-generating and medium fat) such that the corresponding
sub-Riemannian metrics are subanalytic. To characterize these
classes of distributions we determine the dimensions of the
manifolds on which generic germs of distributions of given rank
are respectively 2-generating or medium fat.
LA - eng
KW - Sub-Riemannian metrics; subanalitycity; abnormal length minimizers.; abnormal length minimizer; Carnot-Carathéodory metrics; noninvolutive distributions; abnormal geodesics; sub-Riemannian metrics; subanalytic
UR - http://eudml.org/doc/197295
ER -
References
top- A.A. Agrachev, Quadratic mappings in geometric control theory, in: Itogi Nauki i Tekhniki, Problemy Geometrii, VINITI, Acad. Nauk SSSR, Moscow 20 (1988) 11-205. English transl. in J. Soviet Math. 51 (1990) 2667-2734.
- A.A. Agrachev, The second-order optimality condition in the general nonlinear case. Matem. Sbornik102 (1977) 551-568. English transl. in: Math. USSR Sbornik 31 (1977).
- A.A. Agrachev, Topology of quadratic mappings and Hessians of smooth mappings, in: Itogi Nauki i Tekhniki, Algebra, Topologia, Geometria; VINITI, Acad. Nauk SSSR 26 (1988) 85-124.
- A.A. Agrachev, B. Bonnard, M. Chyba and I. Kupka, Sub-Riemannian spheres in Martinet flat case. ESAIM: Contr., Optim. and Calc. Var. 2 (1997) 377-448.
- A.A. Agrachev and R.V. Gamkrelidze, Second-order optimality condition for the time-optimal problem. Matem. Sbornik100 (1976) 610-643. English transl. in: Math. USSR Sbornik 29 (1976) 547-576.
- A.A. Agrachev and R.V. Gamkrelidze, Exponential representation of flows and chronological calculus. Matem. Sbornik107 (1978) 467-532. English transl. in: Math. USSR Sbornik 35 (1979) 727-785.
- A.A. Agrachev, R.V. Gamkrelidze and A.V. Sarychev, Local invariants of smooth control systems. Acta Appl. Math.14 (1989) 191-237.
- A.A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems. (summary). J. Mathematical Systems, Estimation and Control 5 (1995) 127-130. Complete version: J. Mathematical Systems, Estimation and Control 8 (1998) 87-118.
- A.A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. H. Poincaré13 (1996) 635-690.
- A.A. Agrachev and A.V. Sarychev, Strong minimality of abnormal geodesics for 2-distributions. J. Dynamical Control Systems1 (1995) 139-176.
- V.I. Arnol'd, A.N. Varchenko and S.M. Gusein-Zade, Singularities of differentiable maps 1 Birkhäuser, Boston (1985).
- P. Brunovsky, Existence of regular synthesis for general problems. J. Differential Equations38 (1980) 317-343.
- R.L. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions. Invent. Math.114 (1993) 435-461.
- W-L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster ordnung. Match. Ann. 117, (1940/41) 98-105.
- A.F. Filippov, On certain questions in the theory of optimal control. Vestnik Moskov. Univ., Ser. Matem., Mekhan., Astron. 2 (1959) 25-32.
- A. Gabrielov, Projections of semianalytic sets. Funct. Anal Appl.2 (1968) 282-291.
- R.V. Gamkrelidze, Principles of optimal control theory. Plenum Press, New York (1978).
- Zhong Ge, Horizontal path space and Carnot-Caratheodory metric. Pacific J. Math.161 (1993) 255-286.
- V.Ya. Gershkovich, Bilateral estimates for metrics, generated by completely nonholonomic distributions on Riemannian manifolds. Doklady AN SSSR278 (1984) 1040-1044.
- B.S. Goh, Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control4 (1966) 716-731.
- M. Goresky and R. MacPherson, Stratified Morse Theory. Springer-Verlag, N.Y. (1988) Ch.1.
- R. Hardt, Stratifications of real analytic maps and images. Inventiones Math.28 (1975) 193-208.
- G.W. Haynes and H. Hermes, Nonlinear Controllability via Lie Theory. SIAM J. Control8 (1970) 450-460.
- H. Hironaka, Subanalytic sets, Lecture Notes Istituto Matematico ``Leonida Tonelli'', Pisa, Italy (1973).
- H.J. Kelley, R. Kopp and H.G. Moyer, Singular Extremals, G. Leitman, Ed., Topics in Optimization, Academic Press, New York, N.Y. (1967) 63-101.
- A.J. Krener, The high-order maximum principle and its applications to singular extremals. SIAM J. Control and Optim.15 (1977) 256-293.
- W. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-2 distributions, Memoirs of AMS, No. 564 (1995).
- S. Lojasiewicz Jr. and H.J. Sussmann, Some examples of reachable sets and optimal cost functions that fail to be subanalytic. SIAM J. Control and Optim.23 (1985) 584-598.
- R. Montgomery, Geodesics, which do not satisfy geodesic equations, Preprint (1991).
- R. Montgomery, A survey on singular curves in sub-Riemannian geometry. J. Dynamical and Control Systems1 (1995) 49-90.
- P.K. Rashevsky, About connecting two points of a completely nonholonomic space by admissible curve. Uchen. Zap. Ped. Inst. Libknechta2 (1938) 83-94.
- C.B. Rayner, The exponential map for the Lagrange problem on differentiable manifolds. Philos. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 262 (1967) 299-344.
- J.P. Serre, Lie algebras and lie groups, Benjamin, New York (1965).
- H.J. Sussmann, Subanalytic sets and feedback control. J. Differential Equations31 (1979) 31-52.
- H.J. Sussmann, A cornucopia of four-dimensional abnormall sub-Riemannian minimizers, A. Bellaïche, J.-J. Risler, Eds., Sub-Riemannian Geometry, Birkhäuser, Basel (1996) 341-364.
- H.J. Sussmann, Optimal control and piecewise analyticity of the distance function. A. Ioffe, S. Reich, Eds., Pitman Research Notes in Mathematics, Longman Publishers (1992) 298-310.
- A.M. Vershik and V.Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems. V.I. Arnol'd, S.P. Novikov, Eds., Dynamical systems VII, Encyclopedia of Mathematical Sciences 16, Springer-Verlag, NY (1994).
- L.C. Young, Lectures on the calculus of variations and optimal control theory, Chelsea, New York (1980).
Citations in EuDML Documents
top- Grégoire Charlot, Métriques sous-riemanniennes de quasi-contact : forme normale et caustique
- Ugo Boscain, Grégoire Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost
- Ugo Boscain, Grégoire Charlot, Resonance of minimizers for -level quantum systems with an arbitrary cost
- Kanghai Tan, Xiaoping Yang, Subriemannian geodesics of Carnot groups of step 3
- Andrei Agrachev, Jean-Paul Gauthier, On the subanalyticity of Carnot–Caratheodory distances
- Emmanuel Trélat, Global subanalytic solutions of Hamilton–Jacobi type equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.