The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On pseudospheres that are quasispheres.

John L. LewisAndrew Vogel — 2001

Revista Matemática Iberoamericana

We construct bounded domains D not equal to a ball in n ≥ 3 dimensional Euclidean space, R, for which ∂D is homeomorphic to a sphere under a quasiconformal mapping of R and such that n - 1 dimensional Hausdorff measure equals harmonic measure on ∂D.

On the dimension of p -harmonic measure in space

John L. LewisKaj NyströmAndrew Vogel — 2013

Journal of the European Mathematical Society

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic measure...

Page 1

Download Results (CSV)