Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Non-integrability of certain Hamiltonian systems. Applications of the Morales-Ramis differential Galois extension of Ziglin theory

Andrzej J. Maciejewski — 2002

Banach Center Publications

The aim of this paper is to present two examples of non academic Hamiltonian systems for which the Morales-Ramis theory can be applied effectively. First, we investigate the Gross-Neveu system with n degrees of freedom. Till now it has been proved that this system is not integrable for n = 3. We give a simple proof that it is not completely integrable for an arbitrary n ≥ 3. Our second example is a natural generalisation of the Jacobi problem of a material point moving on an ellipsoid. We formulate...

Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials

Guillaume DuvalAndrzej J. Maciejewski — 2009

Annales de l’institut Fourier

In this paper, we consider the natural complex Hamiltonian systems with homogeneous potential V ( q ) , q n , of degree k . The known results of Morales and Ramis give necessary conditions for the complete integrability of such systems. These conditions are expressed in terms of the eigenvalues of the Hessian matrix V ( c ) calculated at a non-zero point c n , such that V ( c ) = c . The main aim of this paper is to show that there are other obstructions for the integrability which appear if the matrix V ( c ) is not diagonalizable....

Overview of the differential Galois integrability conditions for non-homogeneous potentials

Andrzej J. MaciejewskiMaria Przybylska — 2011

Banach Center Publications

We report our recent results concerning integrability of Hamiltonian systems governed by Hamilton’s function of the form H = 1 / 2 i = 1 n p ² i + V ( q ) , where the potential V is a finite sum of homogeneous components. In this paper we show how to find, in the differential Galois framework, computable necessary conditions for the integrability of such systems. Our main result concerns potentials of the form V = V k + V K , where V k and V K are homogeneous functions of integer degrees k and K > k, respectively. We present examples of integrable...

Page 1

Download Results (CSV)