Differential Galois approach to the non-integrability of the heavy top problem
Andrzej J. Maciejewski; Maria Przybylska
Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)
- Volume: 14, Issue: 1, page 123-160
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMaciejewski, Andrzej J., and Przybylska, Maria. "Differential Galois approach to the non-integrability of the heavy top problem." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.1 (2005): 123-160. <http://eudml.org/doc/73642>.
@article{Maciejewski2005,
author = {Maciejewski, Andrzej J., Przybylska, Maria},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Euler-Poisson equations; Morales-Ramis theory; differential algebra},
language = {eng},
number = {1},
pages = {123-160},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Differential Galois approach to the non-integrability of the heavy top problem},
url = {http://eudml.org/doc/73642},
volume = {14},
year = {2005},
}
TY - JOUR
AU - Maciejewski, Andrzej J.
AU - Przybylska, Maria
TI - Differential Galois approach to the non-integrability of the heavy top problem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 1
SP - 123
EP - 160
LA - eng
KW - Euler-Poisson equations; Morales-Ramis theory; differential algebra
UR - http://eudml.org/doc/73642
ER -
References
top- [1] Arnold ( V.I. ). — Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Springer-Verlag , New York (1978). Zbl0386.70001MR690288
- [2] Audin ( M.). — Spinning tops, volume 51 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1996). Zbl0867.58034MR1409362
- [3] Baider ( A. ) and Churchill ( R.C.). - On monodromy groups of second-order Fuchsian equations, SIAM J. Math. Anal., 21(6), p. 1642-1652 (1990 ). Zbl0752.34002MR1075596
- [4] Baider ( A. ), Churchill ( R.C.), Rod ( D.L.), and Singer ( M.F.). — On the infinitesimal geometry of integrable systems, in Mechanics Day (Waterloo, ON, 1992), volume 7 of Fields Inst. Commun, p. 5-56, Amer. Math. Soc., Providence, RI (1996). Zbl1005.37510MR1365771
- [5] Beukers ( F. ). — Differential Galois theory, in From Number Theory to Physics (Les Houches, 1989), pages 413-439, Springer, Berlin (1992 ). Zbl0813.12001MR1221107
- [6] Bolotin ( S.V. ). - Double asymptotic trajectories and conditions for integrability of Hamiltonian systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 55-63 (1990). Zbl0712.70031MR1064284
- [7] Bolotin ( S.V. ). - Variational methods for constructing chaotic motions in the dynamics of a rigid body, Prikl. Mat. Mekh. , 56(2), p. 230-239 (1992). Zbl0788.70004MR1186623
- [8] Borisov ( A. ) and Mamaev ( I.). — Dynamics of rigid body., NITS Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, in Russian (2001). Zbl1004.70002
- [9] Churchill ( R.C. ) and Rod ( D.L.). - On the determination of Ziglin monodromy groups, SIAM J. Math. Anal., 22(6), p. 1790-1802 (1991). Zbl0739.58018MR1129412
- [10] Churchill ( R.C. ), Rod ( D.L.) and Singer ( M.F.). — Group-theoretic obstructions to integrability, Ergodic Theory Dynam. Systems , 15(1), p. 15-48 (1995). Zbl0824.58021MR1314967
- [11] Dokshevich ( A.I. ). - Resheniya v konechnom vide uravnenii Eilera-Puassona , "Naukova Dumka", Kiev (1992). MR1210498
- [12] Dovbysh ( S.A.). - Splitting of separatrices of unstable uniform rotations and nonintegrability of a perturbed Lagrange problem, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (3) p. 70-77 (1990). Zbl0850.70209MR1064299
- [13] Duval ( A. ) and Loday-Richaud ( M.). — Kovacic's algorithm and its application to some families of special functions, Appl. Algebra Engrg. Comm. Comput., 3(3), p. 211-246 (1992). Zbl0785.12003MR1325757
- [14] Golubev ( V.V.). — Lectures on Integration of Equations of Motion of a Rigid Body about a Fixed Point, Gosud. Isdat. Teh. Teor. Lit., Moscow, in Russian ( 1953). Zbl0122.18701MR61942
- [15] Goryachev ( D.I.). - New integrable cases of integrability of the Euler dynamical equations, Warsaw Univ. Izv., in Russian (1910).
- [16] Kaplansky ( I. ). - An Introduction to Differential Algebra , Hermann, Paris, second edition (1976). MR460303
- [17] Kimura ( T. ). — On Riemann's equations which are solvable by quadratures, Funkcial. Ekvac., 12, p. 269-281 (1969/1970). Zbl0198.11601MR277789
- [18] Kirillov ( A.A.). — Elements of the theory of representations , Springer-Verlag, Berlin (1976), translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften , Band 220. Zbl0342.22001MR412321
- [19] Kovacic ( J.J.). - An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. , 2(1), p. 3-43 (1986). Zbl0603.68035MR839134
- [20] Kowalevski ( S.). - Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12, p. 177-232 (1888). JFM21.0935.01
- [21] Kowalevski ( S.). — Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe, Acta Math., 14, p. 81-93 (1890). JFM22.0921.02
- [22] Kozlov ( V.V. ). - The nonexistence of an additional analytic integral in the problem of the motion of a nonsymmetric heavy solid body around a fixed point, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 105-110 (1975). Zbl0297.70001MR371193
- [23] Kozlov ( V.V. ). — Methods of Qualitative Analysis in the Dynamics of a Rigid Body, Moskov. Gos. Univ., Moscow (1980). Zbl0557.70009MR598628
- [24] Kozlov ( V.V. ) and Treshchev ( D.V.). - Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point. I, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (6), p. 73-81 (1985). Zbl0701.70007MR820192
- [25] Kozlov ( V.V. ) and Treshchev ( D.V.). — Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point. II, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 39-44 (1986). Zbl0701.70007MR831637
- [26] Lagrange ( J.L. ). - Mécanique analytique, volume 2, Chez La Veuve Desaint, Libraire, Paris (1788).
- [27] Leimanis ( E. ). — The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer-Verlag , Berlin (1965). Zbl0128.41606
- [28] Maciejewski ( A.J.). — Non-integrability in gravitational and cosmological models. Introduction to Ziglin theory and its differential Galois extension, in A. J. Maciejewski and B. Steves, editors, The Restless Universe. Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems, p. 361-385 (2001).
- [29] Maciejewski ( A.J.). - Non-integrability of a certain problem of rotational motion of a rigid satellite, in H. Prętka-Ziomek, E. Wnuk, P. K. Seidelmann, and D. Richardson, editors, Dynamics of Natural and Artificial Celestial Bodies, p. 187-192, Kluwer Academic Publisher (2001).
- [30] Maciejewski ( A.J.), Non-integrability of certain Hamiltonian systems. Applications of Morales-Ramis differential Galois extension of Ziglin theory, in T. Crespo and Z. Hajto, editors, Differential Galois Theory , volume 58, p. 139-150, Banach Center Publication, Warsaw (2002). Zbl1033.37028MR1972450
- [31] Maciejewski ( A.J.) and Przybylska ( M.). - Non-integrability of ABC flow, Phys. Lett.A, 303, p. 265-272 (2002). Zbl0999.37036MR1937102
- [32] Maciejewski ( A.J.) and Przybylska ( M.). - Non-integrability of the Suslov problem, Regul. Chaotic Dyn., 7(1), p. 73-80 (2002). Zbl1013.70007MR1900056
- [33] Maciejewski ( A.J.) and Przybylska ( M.). — Non-integrability of restricted two-body problems in constant curvature spaces, Regul. Chaotic Dyn., 8(4), p. 413-430 (2003). Zbl1048.37052MR2023045
- [34] Maciejewski ( A.J.) and Przybylska ( M.). - Non-integrability of the problem of a rigid satellite in gravitational and magnetic fields , Celestial Mech., 87(4), p. 317-351 (2003). Zbl1106.70330MR2027746
- [35] Magid ( A.R. ). — Lectures on Differential Galois Theory, volume 7 of University Lecture Series, American Mathematical Society, Providence, RI (1994). Zbl0855.12001MR1301076
- [36] Marsden ( J.E. ) and Ratiu ( T.S.). - Introduction to Mechanics and Symmetry, number 17 in Texts in Applied Mathematics, Springer Verlag, New York, Berlin, Heidelberg (1994). Zbl0811.70002MR1304682
- [37] Morales ( J.J.) and Simó ( C.). - Picard-Vessiot theory and Ziglin's theorem, J. Differential Equations, 107(1), p. 140-162 (1994). Zbl0799.58035MR1260852
- [38] Morales-Ruiz ( J.J.). - Differential Galois Theory and Non-Integrability of Hamiltonian Systems, volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel ( 1999). Zbl0934.12003MR1713573
- [39] Morales-Ruiz ( J.J.) and Ramis ( J.P.). — Galoisian obstructions to integrability of Hamiltonian systems. I, Methods Appl. Anal., 8(1), p. 33-95 (2001). Zbl1140.37352MR1867495
- [40] Morales-Ruiz ( J.J.) and Ramis ( J.P.). — Galoisian obstructions to integrability of Hamiltonian systems. II, Methods Appl. Anal., 8(1), p. 97-111 (2001). Zbl1140.37354
- [41] Ramis ( J.-P. ) and Martinet ( J.). - Théorie de Galois différentielle et resommation, in Computer Algebra and Differential Equations, p. 117-214, Academic Press, London (1990). Zbl0722.12007
- [42] Singer ( M.F. ) and Ulmer ( F.). — Galois groups of second and third order linear differential equations, J. Symbolic Comput., 16(1),p. 9-36 (1993). Zbl0802.12004MR1237348
- [43] Singer ( M.F. ) and Ulmer ( F.). - Necessary conditions for Liouvillian solutions of (third order) linear differential equations, Appl. Algebra Engrg. Comm. Comput., 6(1), p. 1-22 (1995). Zbl0813.12003MR1341890
- [44] Souriau ( J.-M. ). — Structure des systèmes dynamiques, Maîtrises de mathématiques, Dunod, Paris (1970). Zbl0186.58001MR260238
- [45] Takano ( K. ) and Bannai ( E.). - A global study of Jordan-Pochhammer differential equations, Funkcial. Ekvac., 19(1), p. 85-99 (1976). Zbl0349.34009MR422734
- [46] Ulmer ( F. ) and Weil ( J.-A.). - Note on Kovacic's algorithm , J. Symbolic Comput., 22(2), p. 179-200 (1996). Zbl0871.12008MR1422145
- [47] Van Der Put ( M.) and Singer ( M.F.). - Galois Theory of Linear Differential Equations, volume 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (2003). Zbl1036.12008MR1960772
- [48] Whittaker ( E.T. ) and Watson ( G.N.). - A Course of Modern Analysis , Cambridge University Press, London (1935). MR1424469JFM45.0433.02
- [49] Ziglin ( S.L. ). - Branching of solutions and the nonexistence of an additional first integral in the problem of an asymmetric heavy rigid body in motion relative to a fixed point., Dokl. Akad. Nauk SSSR, 251(4), p. 786-790 (1980). Zbl0528.58010MR568532
- [50] Ziglin ( S.L. ). - Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I, Functional Anal. Appl., 16, p. 181-189 (1982). Zbl0524.58015
- [51] Ziglin ( S.L. ). — Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. II, Functional Anal. Appl., 17, p. 6-17 (1983). Zbl0518.58016
- [52] Ziglin ( S.L. ). — On the absence of a real-analytic first integral in some problems of dynamics, Functional Anal. Appl., 31(1), p. 3-9 (1997). Zbl0988.37074MR1459828
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.