Differential Galois approach to the non-integrability of the heavy top problem

Andrzej J. Maciejewski; Maria Przybylska

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 1, page 123-160
  • ISSN: 0240-2963

How to cite

top

Maciejewski, Andrzej J., and Przybylska, Maria. "Differential Galois approach to the non-integrability of the heavy top problem." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.1 (2005): 123-160. <http://eudml.org/doc/73642>.

@article{Maciejewski2005,
author = {Maciejewski, Andrzej J., Przybylska, Maria},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Euler-Poisson equations; Morales-Ramis theory; differential algebra},
language = {eng},
number = {1},
pages = {123-160},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Differential Galois approach to the non-integrability of the heavy top problem},
url = {http://eudml.org/doc/73642},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Maciejewski, Andrzej J.
AU - Przybylska, Maria
TI - Differential Galois approach to the non-integrability of the heavy top problem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 1
SP - 123
EP - 160
LA - eng
KW - Euler-Poisson equations; Morales-Ramis theory; differential algebra
UR - http://eudml.org/doc/73642
ER -

References

top
  1. [1] Arnold ( V.I. ). — Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Springer-Verlag , New York (1978). Zbl0386.70001MR690288
  2. [2] Audin ( M.). — Spinning tops, volume 51 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1996). Zbl0867.58034MR1409362
  3. [3] Baider ( A. ) and Churchill ( R.C.). - On monodromy groups of second-order Fuchsian equations, SIAM J. Math. Anal., 21(6), p. 1642-1652 (1990 ). Zbl0752.34002MR1075596
  4. [4] Baider ( A. ), Churchill ( R.C.), Rod ( D.L.), and Singer ( M.F.). — On the infinitesimal geometry of integrable systems, in Mechanics Day (Waterloo, ON, 1992), volume 7 of Fields Inst. Commun, p. 5-56, Amer. Math. Soc., Providence, RI (1996). Zbl1005.37510MR1365771
  5. [5] Beukers ( F. ). — Differential Galois theory, in From Number Theory to Physics (Les Houches, 1989), pages 413-439, Springer, Berlin (1992 ). Zbl0813.12001MR1221107
  6. [6] Bolotin ( S.V. ). - Double asymptotic trajectories and conditions for integrability of Hamiltonian systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 55-63 (1990). Zbl0712.70031MR1064284
  7. [7] Bolotin ( S.V. ). - Variational methods for constructing chaotic motions in the dynamics of a rigid body, Prikl. Mat. Mekh. , 56(2), p. 230-239 (1992). Zbl0788.70004MR1186623
  8. [8] Borisov ( A. ) and Mamaev ( I.). — Dynamics of rigid body., NITS Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, in Russian (2001). Zbl1004.70002
  9. [9] Churchill ( R.C. ) and Rod ( D.L.). - On the determination of Ziglin monodromy groups, SIAM J. Math. Anal., 22(6), p. 1790-1802 (1991). Zbl0739.58018MR1129412
  10. [10] Churchill ( R.C. ), Rod ( D.L.) and Singer ( M.F.). — Group-theoretic obstructions to integrability, Ergodic Theory Dynam. Systems , 15(1), p. 15-48 (1995). Zbl0824.58021MR1314967
  11. [11] Dokshevich ( A.I. ). - Resheniya v konechnom vide uravnenii Eilera-Puassona , "Naukova Dumka", Kiev (1992). MR1210498
  12. [12] Dovbysh ( S.A.). - Splitting of separatrices of unstable uniform rotations and nonintegrability of a perturbed Lagrange problem, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (3) p. 70-77 (1990). Zbl0850.70209MR1064299
  13. [13] Duval ( A. ) and Loday-Richaud ( M.). — Kovacic's algorithm and its application to some families of special functions, Appl. Algebra Engrg. Comm. Comput., 3(3), p. 211-246 (1992). Zbl0785.12003MR1325757
  14. [14] Golubev ( V.V.). — Lectures on Integration of Equations of Motion of a Rigid Body about a Fixed Point, Gosud. Isdat. Teh. Teor. Lit., Moscow, in Russian ( 1953). Zbl0122.18701MR61942
  15. [15] Goryachev ( D.I.). - New integrable cases of integrability of the Euler dynamical equations, Warsaw Univ. Izv., in Russian (1910). 
  16. [16] Kaplansky ( I. ). - An Introduction to Differential Algebra , Hermann, Paris, second edition (1976). MR460303
  17. [17] Kimura ( T. ). — On Riemann's equations which are solvable by quadratures, Funkcial. Ekvac., 12, p. 269-281 (1969/1970). Zbl0198.11601MR277789
  18. [18] Kirillov ( A.A.). — Elements of the theory of representations , Springer-Verlag, Berlin (1976), translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften , Band 220. Zbl0342.22001MR412321
  19. [19] Kovacic ( J.J.). - An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. , 2(1), p. 3-43 (1986). Zbl0603.68035MR839134
  20. [20] Kowalevski ( S.). - Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12, p. 177-232 (1888). JFM21.0935.01
  21. [21] Kowalevski ( S.). — Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe, Acta Math., 14, p. 81-93 (1890). JFM22.0921.02
  22. [22] Kozlov ( V.V. ). - The nonexistence of an additional analytic integral in the problem of the motion of a nonsymmetric heavy solid body around a fixed point, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 105-110 (1975). Zbl0297.70001MR371193
  23. [23] Kozlov ( V.V. ). — Methods of Qualitative Analysis in the Dynamics of a Rigid Body, Moskov. Gos. Univ., Moscow (1980). Zbl0557.70009MR598628
  24. [24] Kozlov ( V.V. ) and Treshchev ( D.V.). - Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point. I, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (6), p. 73-81 (1985). Zbl0701.70007MR820192
  25. [25] Kozlov ( V.V. ) and Treshchev ( D.V.). — Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point. II, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 39-44 (1986). Zbl0701.70007MR831637
  26. [26] Lagrange ( J.L. ). - Mécanique analytique, volume 2, Chez La Veuve Desaint, Libraire, Paris (1788). 
  27. [27] Leimanis ( E. ). — The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer-Verlag , Berlin (1965). Zbl0128.41606
  28. [28] Maciejewski ( A.J.). — Non-integrability in gravitational and cosmological models. Introduction to Ziglin theory and its differential Galois extension, in A. J. Maciejewski and B. Steves, editors, The Restless Universe. Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems, p. 361-385 (2001). 
  29. [29] Maciejewski ( A.J.). - Non-integrability of a certain problem of rotational motion of a rigid satellite, in H. Prętka-Ziomek, E. Wnuk, P. K. Seidelmann, and D. Richardson, editors, Dynamics of Natural and Artificial Celestial Bodies, p. 187-192, Kluwer Academic Publisher (2001). 
  30. [30] Maciejewski ( A.J.), Non-integrability of certain Hamiltonian systems. Applications of Morales-Ramis differential Galois extension of Ziglin theory, in T. Crespo and Z. Hajto, editors, Differential Galois Theory , volume 58, p. 139-150, Banach Center Publication, Warsaw (2002). Zbl1033.37028MR1972450
  31. [31] Maciejewski ( A.J.) and Przybylska ( M.). - Non-integrability of ABC flow, Phys. Lett.A, 303, p. 265-272 (2002). Zbl0999.37036MR1937102
  32. [32] Maciejewski ( A.J.) and Przybylska ( M.). - Non-integrability of the Suslov problem, Regul. Chaotic Dyn., 7(1), p. 73-80 (2002). Zbl1013.70007MR1900056
  33. [33] Maciejewski ( A.J.) and Przybylska ( M.). — Non-integrability of restricted two-body problems in constant curvature spaces, Regul. Chaotic Dyn., 8(4), p. 413-430 (2003). Zbl1048.37052MR2023045
  34. [34] Maciejewski ( A.J.) and Przybylska ( M.). - Non-integrability of the problem of a rigid satellite in gravitational and magnetic fields , Celestial Mech., 87(4), p. 317-351 (2003). Zbl1106.70330MR2027746
  35. [35] Magid ( A.R. ). — Lectures on Differential Galois Theory, volume 7 of University Lecture Series, American Mathematical Society, Providence, RI (1994). Zbl0855.12001MR1301076
  36. [36] Marsden ( J.E. ) and Ratiu ( T.S.). - Introduction to Mechanics and Symmetry, number 17 in Texts in Applied Mathematics, Springer Verlag, New York, Berlin, Heidelberg (1994). Zbl0811.70002MR1304682
  37. [37] Morales ( J.J.) and Simó ( C.). - Picard-Vessiot theory and Ziglin's theorem, J. Differential Equations, 107(1), p. 140-162 (1994). Zbl0799.58035MR1260852
  38. [38] Morales-Ruiz ( J.J.). - Differential Galois Theory and Non-Integrability of Hamiltonian Systems, volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel ( 1999). Zbl0934.12003MR1713573
  39. [39] Morales-Ruiz ( J.J.) and Ramis ( J.P.). — Galoisian obstructions to integrability of Hamiltonian systems. I, Methods Appl. Anal., 8(1), p. 33-95 (2001). Zbl1140.37352MR1867495
  40. [40] Morales-Ruiz ( J.J.) and Ramis ( J.P.). — Galoisian obstructions to integrability of Hamiltonian systems. II, Methods Appl. Anal., 8(1), p. 97-111 (2001). Zbl1140.37354
  41. [41] Ramis ( J.-P. ) and Martinet ( J.). - Théorie de Galois différentielle et resommation, in Computer Algebra and Differential Equations, p. 117-214, Academic Press, London (1990). Zbl0722.12007
  42. [42] Singer ( M.F. ) and Ulmer ( F.). — Galois groups of second and third order linear differential equations, J. Symbolic Comput., 16(1),p. 9-36 (1993). Zbl0802.12004MR1237348
  43. [43] Singer ( M.F. ) and Ulmer ( F.). - Necessary conditions for Liouvillian solutions of (third order) linear differential equations, Appl. Algebra Engrg. Comm. Comput., 6(1), p. 1-22 (1995). Zbl0813.12003MR1341890
  44. [44] Souriau ( J.-M. ). — Structure des systèmes dynamiques, Maîtrises de mathématiques, Dunod, Paris (1970). Zbl0186.58001MR260238
  45. [45] Takano ( K. ) and Bannai ( E.). - A global study of Jordan-Pochhammer differential equations, Funkcial. Ekvac., 19(1), p. 85-99 (1976). Zbl0349.34009MR422734
  46. [46] Ulmer ( F. ) and Weil ( J.-A.). - Note on Kovacic's algorithm , J. Symbolic Comput., 22(2), p. 179-200 (1996). Zbl0871.12008MR1422145
  47. [47] Van Der Put ( M.) and Singer ( M.F.). - Galois Theory of Linear Differential Equations, volume 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (2003). Zbl1036.12008MR1960772
  48. [48] Whittaker ( E.T. ) and Watson ( G.N.). - A Course of Modern Analysis , Cambridge University Press, London (1935). MR1424469JFM45.0433.02
  49. [49] Ziglin ( S.L. ). - Branching of solutions and the nonexistence of an additional first integral in the problem of an asymmetric heavy rigid body in motion relative to a fixed point., Dokl. Akad. Nauk SSSR, 251(4), p. 786-790 (1980). Zbl0528.58010MR568532
  50. [50] Ziglin ( S.L. ). - Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I, Functional Anal. Appl., 16, p. 181-189 (1982). Zbl0524.58015
  51. [51] Ziglin ( S.L. ). — Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. II, Functional Anal. Appl., 17, p. 6-17 (1983). Zbl0518.58016
  52. [52] Ziglin ( S.L. ). — On the absence of a real-analytic first integral in some problems of dynamics, Functional Anal. Appl., 31(1), p. 3-9 (1997). Zbl0988.37074MR1459828

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.