Invariant measures and a linear model of turbulence
We consider the family 𝓜 of measures with values in a reflexive Banach space. In 𝓜 we introduce the notion of a Markov operator and using an extension of the Fortet-Mourier norm we show some criteria of the asymptotic stability. Asymptotically stable Markov operators can be used to construct coloured fractals.
New sufficient conditions for asymptotic stability of Markov operators are given. These criteria are applied to a class of Volterra type integral operators with advanced argument.
In questa Nota si usa il teorema dell'applicazione aperta alla teoria delle equazioni integrali non lineari del tipo di Hammerstein. Si mostra che dall'unicità delle soluzioni per un insieme aperto di nuclei segue l'esistenza delle soluzioni stesse.
Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.
Page 1