# Asymptotic properties of Markov operators defined by Volterra type integrals

Annales Polonici Mathematici (1993)

- Volume: 58, Issue: 2, page 161-175
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topKarol Baron, and Andrzej Lasota. "Asymptotic properties of Markov operators defined by Volterra type integrals." Annales Polonici Mathematici 58.2 (1993): 161-175. <http://eudml.org/doc/262424>.

@article{KarolBaron1993,

abstract = {New sufficient conditions for asymptotic stability of Markov operators are given. These criteria are applied to a class of Volterra type integral operators with advanced argument.},

author = {Karol Baron, Andrzej Lasota},

journal = {Annales Polonici Mathematici},

keywords = {Markov operator; integral Markov operator; stationary density; asymptotic stability; sweeping; asymptotic stability of Markov operators; Volterra type integral operators},

language = {eng},

number = {2},

pages = {161-175},

title = {Asymptotic properties of Markov operators defined by Volterra type integrals},

url = {http://eudml.org/doc/262424},

volume = {58},

year = {1993},

}

TY - JOUR

AU - Karol Baron

AU - Andrzej Lasota

TI - Asymptotic properties of Markov operators defined by Volterra type integrals

JO - Annales Polonici Mathematici

PY - 1993

VL - 58

IS - 2

SP - 161

EP - 175

AB - New sufficient conditions for asymptotic stability of Markov operators are given. These criteria are applied to a class of Volterra type integral operators with advanced argument.

LA - eng

KW - Markov operator; integral Markov operator; stationary density; asymptotic stability; sweeping; asymptotic stability of Markov operators; Volterra type integral operators

UR - http://eudml.org/doc/262424

ER -

## References

top- [1] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Math. Stud. 21, Van Nostrand, 1969.
- [2] H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166. Zbl0721.34094
- [3] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. Zbl0767.47012
- [4] U. Krengel, Ergodic Theorems, de Gruyter, 1985.
- [5] A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. Zbl0529.92011
- [6] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. Zbl0606.58002
- [7] A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol. 30 (1992), 775-800. Zbl0763.92001
- [8] J. Malczak, An application of Markov operators in differential and integral equations, Rend. Sem. Mat. Univ. Padova, in press. Zbl0795.60071
- [9] J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math. 48 (1988), 51-56. Zbl0657.60089
- [10] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475. Zbl0716.92017
- [11] J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic model of the cell cycle, J. Math. Biol. 22 (1985), 61-68. Zbl0558.92012
- [12] J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol. 23 (1986), 231-246. Zbl0582.92020

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.