Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid

Aneta Wróblewska-Kamińska — 2023

Archivum Mathematicum

We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter ε 0 , the Froude number proportional to ε and when the fluid occupies large domain with spatial obstacle of rough surface varying when ε 0 . The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral...

Elliptic problems in generalized Orlicz-Musielak spaces

We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.

Well-posedness for a class of non-Newtonian fluids with general growth conditions

The paper concerns uniqueness of weak solutions to non-Newtonian fluids with nonstandard growth conditions for the Cauchy stress tensor. We recall the results on existence of weak solutions and additionally provide the proof of existence of measure-valued solutions. Motivated by the fluids of strongly inhomogeneous behaviour and having the property of rapid shear thickening we observe that the described situation cannot be captured by power-law-type rheology. We describe the growth conditions with...

Page 1

Download Results (CSV)