On the Piatetski-Shapiro-Vinogradov theorem
In this paper we consider the asymptotic formula for the number of the solutions of the equation where is an odd integer and the unknowns are prime numbers of the form . We use the two-dimensional van der Corput’s method to prove it under less restrictive conditions than before. In the most interesting case our theorem implies that every sufficiently large odd integer may be written as the sum of three Piatetski-Shapiro primes of type for < < .