We consider a complete metric space equipped with a doubling measure and a weak Poincaré inequality. We prove that for all p-superharmonic functions there exists an upper gradient that is integrable on H-chain sets with a positive exponent.
We consider a class of fourth order elliptic systems which include the Euler-Lagrange equations of biharmonic mappings in dimension 4 and we prove that a weak limit of weak solutions to such systems is again a weak solution to a limit system.
We describe some recent results obtained in [29], where we prove regularity theorems for sub-elliptic equations in (horizontal) divergence form defined in the Heisenberg group, and exhibiting polynomial growth of order p. The main result tells that when solutions to possibly degenerate equations are locally Lipschitz continuous with respect to the intrinsic distance. In particular, such result applies to p-harmonic functions in the Heisenberg group. Explicit estimates are obtained, and eventually...
Download Results (CSV)