On polyharmonic maps into spheres in the critical dimension

Paweł Goldstein; Paweł Strzelecki; Anna Zatorska-Goldstein

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1387-1405
  • ISSN: 0294-1449

How to cite

top

Goldstein, Paweł, Strzelecki, Paweł, and Zatorska-Goldstein, Anna. "On polyharmonic maps into spheres in the critical dimension." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1387-1405. <http://eudml.org/doc/78895>.

@article{Goldstein2009,
author = {Goldstein, Paweł, Strzelecki, Paweł, Zatorska-Goldstein, Anna},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {polyharmonic maps; nonlinear elliptic systems; regularity; weak convergence},
language = {eng},
number = {4},
pages = {1387-1405},
publisher = {Elsevier},
title = {On polyharmonic maps into spheres in the critical dimension},
url = {http://eudml.org/doc/78895},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Goldstein, Paweł
AU - Strzelecki, Paweł
AU - Zatorska-Goldstein, Anna
TI - On polyharmonic maps into spheres in the critical dimension
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1387
EP - 1405
LA - eng
KW - polyharmonic maps; nonlinear elliptic systems; regularity; weak convergence
UR - http://eudml.org/doc/78895
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press, New York–London, 1975. Zbl0314.46030MR450957
  2. [2] G. Angelsberg, D. Pumberger, A regularity result for polyharmonic maps with higher integrability, Preprint. Zbl1172.58003MR2480664
  3. [3] Bethuel F., On the singular set of stationary harmonic maps, Manuscripta Math.78 (1993) 417-443. Zbl0792.53039MR1208652
  4. [4] Chang S.-Y.A., Wang L., Yang P., A regularity theory of biharmonic maps, Comm. Pure Appl. Math.52 (1999) 1113-1137. Zbl0953.58013MR1692148
  5. [5] Coifman R., Lions P.L., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993) 247-286. Zbl0864.42009MR1225511
  6. [6] Evans L.C., Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal.116 (1991) 101-113. Zbl0754.58007MR1143435
  7. [7] Frehse J., A discontinuous solution of a mildly nonlinear elliptic system, Math. Z.134 (1973) 229-230. Zbl0267.35038MR344673
  8. [8] Gastel A., The extrinsic polyharmonic map heat flow in the critical dimension, Adv. Geom.6 (2006) 501-521. Zbl1136.58010MR2267035
  9. [9] A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, Commun. Anal. Geom., in press. Zbl1183.58010MR2520907
  10. [10] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, NJ, 1983. Zbl0516.49003MR717034
  11. [11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  12. [12] Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc.145 (688) (2000), x+101 pp. Zbl0954.46022MR1683160
  13. [13] Hajłasz P., Strzelecki P., Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann.312 (2) (1998) 341-362. Zbl0914.35029MR1671796
  14. [14] Hélein F., Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002. Zbl1010.58010MR1913803
  15. [15] Lamm T., Rivière T., Conservation laws for fourth order systems in four dimensions, Comm. Partial Differential Equations33 (2008) 245-262. Zbl1139.35328MR2398228
  16. [16] Meyer Y., Rivière T., A partial regularity result for a class of stationary Yang–Mills fields in high dimension, Rev. Mat. Iberoamericana19 (1) (2003) 195-219. Zbl1127.35317MR1993420
  17. [17] D. Pumberger, Regularity results for stationary harmonic and J-holomorphic maps, Preprint, ETH Zuerich, 2004. 
  18. [18] Rivière T., Everywhere discontinuous harmonic maps into spheres, Acta Math.175 (2) (1995) 197-226. Zbl0898.58011MR1368247
  19. [19] Rivière T., Conservation laws for conformally invariant variational problems, Invent. Math.168 (2007) 1-22. Zbl1128.58010MR2285745
  20. [20] Rivière T., Struwe M., Partial regularity for harmonic maps, and related problems, Comm. Pure Appl. Math.61 (2008) 451-463. Zbl1144.58011MR2383929
  21. [21] Rivière T., Strzelecki P., A sharp nonlinear Gagliardo–Nirenberg-type estimate and applications to the regularity of elliptic systems, Comm. Partial Differential Equations30 (2005) 589-604. Zbl1157.35376MR2153509
  22. [22] Scheven Ch., Dimension reduction for the singular set of biharmonic maps, Adv. Calc. Var.1 (1) (2008) 53-91. Zbl1152.58011MR2402212
  23. [23] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
  24. [24] Strzelecki P., Hardy space estimates for higher-order differential operators, Indiana Univ. Math. J.50 (2001) 1447-1461. Zbl1033.42021MR1871764
  25. [25] Strzelecki P., On biharmonic maps and their generalizations, Calc. Var. Partial Differential Equations18 (2003) 401-432. Zbl1106.35021MR2020368
  26. [26] Uhlenbeck K., Connections with L p bounds on curvature, Comm. Math. Phys.83 (1982) 31-42. Zbl0499.58019MR648356
  27. [27] Wang Ch., Biharmonic maps from R 4 into a Riemannian manifold, Math. Z.247 (1) (2004) 65-87. Zbl1064.58016MR2054520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.