On polyharmonic maps into spheres in the critical dimension
Paweł Goldstein; Paweł Strzelecki; Anna Zatorska-Goldstein
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1387-1405
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGoldstein, Paweł, Strzelecki, Paweł, and Zatorska-Goldstein, Anna. "On polyharmonic maps into spheres in the critical dimension." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1387-1405. <http://eudml.org/doc/78895>.
@article{Goldstein2009,
author = {Goldstein, Paweł, Strzelecki, Paweł, Zatorska-Goldstein, Anna},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {polyharmonic maps; nonlinear elliptic systems; regularity; weak convergence},
language = {eng},
number = {4},
pages = {1387-1405},
publisher = {Elsevier},
title = {On polyharmonic maps into spheres in the critical dimension},
url = {http://eudml.org/doc/78895},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Goldstein, Paweł
AU - Strzelecki, Paweł
AU - Zatorska-Goldstein, Anna
TI - On polyharmonic maps into spheres in the critical dimension
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1387
EP - 1405
LA - eng
KW - polyharmonic maps; nonlinear elliptic systems; regularity; weak convergence
UR - http://eudml.org/doc/78895
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press, New York–London, 1975. Zbl0314.46030MR450957
- [2] G. Angelsberg, D. Pumberger, A regularity result for polyharmonic maps with higher integrability, Preprint. Zbl1172.58003MR2480664
- [3] Bethuel F., On the singular set of stationary harmonic maps, Manuscripta Math.78 (1993) 417-443. Zbl0792.53039MR1208652
- [4] Chang S.-Y.A., Wang L., Yang P., A regularity theory of biharmonic maps, Comm. Pure Appl. Math.52 (1999) 1113-1137. Zbl0953.58013MR1692148
- [5] Coifman R., Lions P.L., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993) 247-286. Zbl0864.42009MR1225511
- [6] Evans L.C., Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal.116 (1991) 101-113. Zbl0754.58007MR1143435
- [7] Frehse J., A discontinuous solution of a mildly nonlinear elliptic system, Math. Z.134 (1973) 229-230. Zbl0267.35038MR344673
- [8] Gastel A., The extrinsic polyharmonic map heat flow in the critical dimension, Adv. Geom.6 (2006) 501-521. Zbl1136.58010MR2267035
- [9] A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, Commun. Anal. Geom., in press. Zbl1183.58010MR2520907
- [10] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, NJ, 1983. Zbl0516.49003MR717034
- [11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [12] Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc.145 (688) (2000), x+101 pp. Zbl0954.46022MR1683160
- [13] Hajłasz P., Strzelecki P., Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann.312 (2) (1998) 341-362. Zbl0914.35029MR1671796
- [14] Hélein F., Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002. Zbl1010.58010MR1913803
- [15] Lamm T., Rivière T., Conservation laws for fourth order systems in four dimensions, Comm. Partial Differential Equations33 (2008) 245-262. Zbl1139.35328MR2398228
- [16] Meyer Y., Rivière T., A partial regularity result for a class of stationary Yang–Mills fields in high dimension, Rev. Mat. Iberoamericana19 (1) (2003) 195-219. Zbl1127.35317MR1993420
- [17] D. Pumberger, Regularity results for stationary harmonic and J-holomorphic maps, Preprint, ETH Zuerich, 2004.
- [18] Rivière T., Everywhere discontinuous harmonic maps into spheres, Acta Math.175 (2) (1995) 197-226. Zbl0898.58011MR1368247
- [19] Rivière T., Conservation laws for conformally invariant variational problems, Invent. Math.168 (2007) 1-22. Zbl1128.58010MR2285745
- [20] Rivière T., Struwe M., Partial regularity for harmonic maps, and related problems, Comm. Pure Appl. Math.61 (2008) 451-463. Zbl1144.58011MR2383929
- [21] Rivière T., Strzelecki P., A sharp nonlinear Gagliardo–Nirenberg-type estimate and applications to the regularity of elliptic systems, Comm. Partial Differential Equations30 (2005) 589-604. Zbl1157.35376MR2153509
- [22] Scheven Ch., Dimension reduction for the singular set of biharmonic maps, Adv. Calc. Var.1 (1) (2008) 53-91. Zbl1152.58011MR2402212
- [23] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
- [24] Strzelecki P., Hardy space estimates for higher-order differential operators, Indiana Univ. Math. J.50 (2001) 1447-1461. Zbl1033.42021MR1871764
- [25] Strzelecki P., On biharmonic maps and their generalizations, Calc. Var. Partial Differential Equations18 (2003) 401-432. Zbl1106.35021MR2020368
- [26] Uhlenbeck K., Connections with bounds on curvature, Comm. Math. Phys.83 (1982) 31-42. Zbl0499.58019MR648356
- [27] Wang Ch., Biharmonic maps from into a Riemannian manifold, Math. Z.247 (1) (2004) 65-87. Zbl1064.58016MR2054520
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.