Klassische und schwache Lösungen des Dirichletproblems für lineare elliptische Gleichungen höherer Ordnung in Gebieten mit konischen Ecken.
We consider a class of semilinear elliptic problems in two- and three-dimensional domains with conical points. We introduce Sobolev spaces with detached asymptotics generated by the asymptotical behaviour of solutions of corresponding linearized problems near conical boundary points. We show that the corresponding nonlinear operator acting between these spaces is Frechet differentiable. Applying the local invertibility theorem we prove that the solution of the semilinear problem has the same asymptotic...
We consider coupled structures consisting of two different linear elastic materials bonded along an interface. The material discontinuities combined with geometrical peculiarities of the outer boundary lead to unbounded stresses. The mathematical analysis of the singular behaviour of the elastic fields, especially near points where the interface meets the outer boundary, can be performed by means of asymptotic expansions with respect to the distance from the geometrical and structural singularities....
This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear...
This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear...
The paper is concerned with the numerical analysis of an elliptic equation in a polygon with a nonlinear Newton boundary condition, discretized by the finite element or discontinuous Galerkin methods. Using the monotone operator theory, it is possible to prove the existence and uniqueness of the exact weak solution and the approximate solution. The main attention is paid to the study of error estimates. To this end, the regularity of the weak solution is investigated and it is shown that due to...
Page 1