The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A Galois D -groupoid for q -difference equations

Anne Granier — 2011

Annales de l’institut Fourier

We first recall Malgrange’s definition of D -groupoid and we define a Galois D -groupoid for q -difference equations. Then, we compute explicitly the Galois D -groupoid of a constant linear q -difference system, and show that it corresponds to the q -difference Galois group. Finally, we establish a conjugation between the Galois D -groupoids of two equivalent constant linear q -difference systems, and define a local Galois D -groupoid for Fuchsian linear q -difference systems by giving its realizations.

Page 1

Download Results (CSV)