Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

SURE shrinkage of gaussian paths and signal identification

Nicolas PrivaultAnthony Réveillac — 2011

ESAIM: Probability and Statistics

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

SURE shrinkage of Gaussian paths and signal identification

Nicolas PrivaultAnthony Réveillac — 2012

ESAIM: Probability and Statistics

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

Multivariate normal approximation using Stein’s method and Malliavin calculus

Ivan NourdinGiovanni PeccatiAnthony Réveillac — 2010

Annales de l'I.H.P. Probabilités et statistiques

We combine Stein’s method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of gaussian fields. Among several examples, we provide an application to a functional version of the Breuer–Major CLT for fields subordinated to a fractional brownian motion.

Page 1

Download Results (CSV)