Ricci curvature and qusiconformal deformations of a Riemannian manifold.
The four natural boundary problems for the weighted form Laplacians acting on polynomial differential forms in the -dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.
Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.
A Weitzenböck formula for SL(q)-foliations is derived. Its linear part is a relative trace of the relative curvature operator acting on vector valued forms.
A Weitzenböck formula for the Laplace-Beltrami operator acting on differential forms on Lie algebroids is derived.
Page 1