Natural boundary value problems for weighted form laplacians

Wojciech Kozłowski; Antoni Pierzchalski

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 2, page 343-367
  • ISSN: 0391-173X

Abstract

top
The four natural boundary problems for the weighted form Laplacians L = a d δ + b δ d , a , b > 0 acting on polynomial differential forms in the n -dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.

How to cite

top

Kozłowski, Wojciech, and Pierzchalski, Antoni. "Natural boundary value problems for weighted form laplacians." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.2 (2008): 343-367. <http://eudml.org/doc/272256>.

@article{Kozłowski2008,
abstract = {The four natural boundary problems for the weighted form Laplacians $L=ad\delta +b\delta d, \ a, b&gt;0$ acting on polynomial differential forms in the $n$-dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.},
author = {Kozłowski, Wojciech, Pierzchalski, Antoni},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {weighted Laplacian; differential forms; boundary condition},
language = {eng},
number = {2},
pages = {343-367},
publisher = {Scuola Normale Superiore, Pisa},
title = {Natural boundary value problems for weighted form laplacians},
url = {http://eudml.org/doc/272256},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Kozłowski, Wojciech
AU - Pierzchalski, Antoni
TI - Natural boundary value problems for weighted form laplacians
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 2
SP - 343
EP - 367
AB - The four natural boundary problems for the weighted form Laplacians $L=ad\delta +b\delta d, \ a, b&gt;0$ acting on polynomial differential forms in the $n$-dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.
LA - eng
KW - weighted Laplacian; differential forms; boundary condition
UR - http://eudml.org/doc/272256
ER -

References

top
  1. [1] I. G. Avramidi, Non-Laplace type operators on manifolds with boundary, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ (2006), 107–140. Zbl1122.58013MR2246767
  2. [2] I. G. Avramidi and T. P. Branson Heat kernel asymptotics of operators with non-Laplace principal part, Rev. Math. Phys. 13 (2001), 847–890. Zbl1031.58015MR1843855
  3. [3] T. P. Branson, P. B. Gilkey and A. Pierzchalski, Heat equation asymptotics of elliptic differential operators with non scalar leading symbol, Math. Nachr166 (1994), 207–215. Zbl0831.35041MR1273333
  4. [4] L. V. Ahlfors, Conditions for quasiconformal deformations in several variables, Contributions to Analysis, A collection of papers dedicated to L. Bers, Academic press, New York (1974), 19–25. Zbl0304.30015MR367189
  5. [5] L. V. Ahlfors, Invariant operators and integral representations in hyperbolic spaces, Math. Scand.36 (1975), 27–43. Zbl0313.31009MR402036
  6. [6] L. V. Ahlfors, Quasiconformal deformations and mappings in n , J. Anal. Math.30 (1976), 74–97. Zbl0338.30017MR492238
  7. [7] T. P. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal.151 (1997), 334–383. Zbl0904.58054MR1491546
  8. [8] T. P. Branson and A. Pierzchalski, Natural boundary conditions for gradients, Łódź University, Faculty of Mathematics and Computer Science, preprint 2008. 
  9. [9] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, L’Enseignement Mathematique14 (1969), 121–175. Zbl0174.18902MR255877
  10. [10] P. B. Gilkey, “Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem”, Publish or Perish, Wilmington, Delaware, 1984. Zbl0565.58035MR783634
  11. [11] P. B. Gilkey, T. P. Branson and S. A. Fulling, Heat equation asymptotics of “nonminimal” operators on differential forms, J. Math. Phys.32 (1991), 2089–2091. Zbl0778.58062MR1123599
  12. [12] P. B. Gilkey and L. Smith, The eta invariant for a class of elliptic boundary value problems, Comm. Pure Appl. Math.98 (1976), 225–240. Zbl0512.58035MR680084
  13. [13] V. P. Gusynin and V. V. Kornyak, DeWitt-Seeley-Gilkey coefficients for nonminimal operators in curved space, Fundam. Prikl. Math.5 (1999), 649–674. Zbl1031.58014MR1806847
  14. [14] Y. Homma, Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds, Trans. Amer. Math. Soc.358 (2006), 87–114. Zbl1079.53026MR2171224
  15. [15] J. Kalina, B. Ørsted, A. Pierzchalski, P. Walczak and G. Zhang, Elliptic gradients and highest weights, Bull. Polon. Acad. Sci. Ser. Math.44 (1996), 511–519. Zbl0899.22011MR1420968
  16. [16] J. Kalina, A. Pierzchalski and P. Walczak, Only one of generalized gradients can be elliptic, Ann. Pol. Math.67 (1997), 111–120. Zbl0901.53017MR1460594
  17. [17] I. Kolář, P. W. Michor and J. Slovák, “Natural Operations in Differential Geometry”, Springer-Verlag Berlin Heidelberg, 1993. Zbl0782.53013MR1202431
  18. [18] W. Kozłowski, Laplace type operators: Dirichlet problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2007), 53–80. Zbl1185.35039MR2341515
  19. [19] A. Lipowski, Boundary problems for the Ahlfors operator, (in Polish), Ph.D. Thesis, Łódź University (1996), 1–55. 
  20. [20] R. Palais, “Seminar on the Atiyah-Singer Index Theorem”, Annals of Mathematics Studies, Vol. 57, Princeton University Press, Princeton, N.J., 1965. Zbl0137.17002MR198494
  21. [21] B. Ørsted and A. Pierzchalski, The Ahlfors Laplacian on a Riemannian manifold with boundary, Michigan Math. J.43 (1996), 99–122. Zbl0853.58108MR1381602
  22. [22] A. Pierzchalski, “Geometry of Quasiconformal Deformations of Riemannian Manifolds”, Łódź University Press, 1997. 
  23. [23] A. Pierzchalski, Ricci curvature and quasiconformal deformations of a Riemannian manifold”, Manuscripta Math. 66 (1989), 113–127. Zbl0698.53021MR1027303
  24. [24] H. M. Reimann, Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci.9 (1982), 160–174. Zbl0491.35027MR664106
  25. [25] H. M. Reimann, Invariant system of differential operators, Proc. of a seminar held in Torino May-June 1982, Topics in modern harmonic analysis, Instituto di Alta Matematica, Roma, 1983. Zbl0564.35017MR748882
  26. [26] E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representation od the rotation group, Amer J. Math.90 (1968), 163–196. Zbl0157.18303MR223492
  27. [27] E. M. Stein and G. Weiss, “Fourier Analysis on Euclidean Spaces”, Princeton University Press, 1971. Zbl0232.42007MR304972
  28. [28] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschingungen einer beliebig gestalten elastischen Koerpers, Rendiconti Cir. Mat. Palermo39 (1915), 1–49. JFM45.1016.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.