Natural boundary value problems for weighted form laplacians
Wojciech Kozłowski; Antoni Pierzchalski
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 2, page 343-367
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKozłowski, Wojciech, and Pierzchalski, Antoni. "Natural boundary value problems for weighted form laplacians." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.2 (2008): 343-367. <http://eudml.org/doc/272256>.
@article{Kozłowski2008,
abstract = {The four natural boundary problems for the weighted form Laplacians $L=ad\delta +b\delta d, \ a, b>0$ acting on polynomial differential forms in the $n$-dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.},
author = {Kozłowski, Wojciech, Pierzchalski, Antoni},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {weighted Laplacian; differential forms; boundary condition},
language = {eng},
number = {2},
pages = {343-367},
publisher = {Scuola Normale Superiore, Pisa},
title = {Natural boundary value problems for weighted form laplacians},
url = {http://eudml.org/doc/272256},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Kozłowski, Wojciech
AU - Pierzchalski, Antoni
TI - Natural boundary value problems for weighted form laplacians
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 2
SP - 343
EP - 367
AB - The four natural boundary problems for the weighted form Laplacians $L=ad\delta +b\delta d, \ a, b>0$ acting on polynomial differential forms in the $n$-dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.
LA - eng
KW - weighted Laplacian; differential forms; boundary condition
UR - http://eudml.org/doc/272256
ER -
References
top- [1] I. G. Avramidi, Non-Laplace type operators on manifolds with boundary, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ (2006), 107–140. Zbl1122.58013MR2246767
- [2] I. G. Avramidi and T. P. Branson Heat kernel asymptotics of operators with non-Laplace principal part, Rev. Math. Phys. 13 (2001), 847–890. Zbl1031.58015MR1843855
- [3] T. P. Branson, P. B. Gilkey and A. Pierzchalski, Heat equation asymptotics of elliptic differential operators with non scalar leading symbol, Math. Nachr166 (1994), 207–215. Zbl0831.35041MR1273333
- [4] L. V. Ahlfors, Conditions for quasiconformal deformations in several variables, Contributions to Analysis, A collection of papers dedicated to L. Bers, Academic press, New York (1974), 19–25. Zbl0304.30015MR367189
- [5] L. V. Ahlfors, Invariant operators and integral representations in hyperbolic spaces, Math. Scand.36 (1975), 27–43. Zbl0313.31009MR402036
- [6] L. V. Ahlfors, Quasiconformal deformations and mappings in , J. Anal. Math.30 (1976), 74–97. Zbl0338.30017MR492238
- [7] T. P. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal.151 (1997), 334–383. Zbl0904.58054MR1491546
- [8] T. P. Branson and A. Pierzchalski, Natural boundary conditions for gradients, Łódź University, Faculty of Mathematics and Computer Science, preprint 2008.
- [9] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, L’Enseignement Mathematique14 (1969), 121–175. Zbl0174.18902MR255877
- [10] P. B. Gilkey, “Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem”, Publish or Perish, Wilmington, Delaware, 1984. Zbl0565.58035MR783634
- [11] P. B. Gilkey, T. P. Branson and S. A. Fulling, Heat equation asymptotics of “nonminimal” operators on differential forms, J. Math. Phys.32 (1991), 2089–2091. Zbl0778.58062MR1123599
- [12] P. B. Gilkey and L. Smith, The eta invariant for a class of elliptic boundary value problems, Comm. Pure Appl. Math.98 (1976), 225–240. Zbl0512.58035MR680084
- [13] V. P. Gusynin and V. V. Kornyak, DeWitt-Seeley-Gilkey coefficients for nonminimal operators in curved space, Fundam. Prikl. Math.5 (1999), 649–674. Zbl1031.58014MR1806847
- [14] Y. Homma, Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds, Trans. Amer. Math. Soc.358 (2006), 87–114. Zbl1079.53026MR2171224
- [15] J. Kalina, B. Ørsted, A. Pierzchalski, P. Walczak and G. Zhang, Elliptic gradients and highest weights, Bull. Polon. Acad. Sci. Ser. Math.44 (1996), 511–519. Zbl0899.22011MR1420968
- [16] J. Kalina, A. Pierzchalski and P. Walczak, Only one of generalized gradients can be elliptic, Ann. Pol. Math.67 (1997), 111–120. Zbl0901.53017MR1460594
- [17] I. Kolář, P. W. Michor and J. Slovák, “Natural Operations in Differential Geometry”, Springer-Verlag Berlin Heidelberg, 1993. Zbl0782.53013MR1202431
- [18] W. Kozłowski, Laplace type operators: Dirichlet problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2007), 53–80. Zbl1185.35039MR2341515
- [19] A. Lipowski, Boundary problems for the Ahlfors operator, (in Polish), Ph.D. Thesis, Łódź University (1996), 1–55.
- [20] R. Palais, “Seminar on the Atiyah-Singer Index Theorem”, Annals of Mathematics Studies, Vol. 57, Princeton University Press, Princeton, N.J., 1965. Zbl0137.17002MR198494
- [21] B. Ørsted and A. Pierzchalski, The Ahlfors Laplacian on a Riemannian manifold with boundary, Michigan Math. J.43 (1996), 99–122. Zbl0853.58108MR1381602
- [22] A. Pierzchalski, “Geometry of Quasiconformal Deformations of Riemannian Manifolds”, Łódź University Press, 1997.
- [23] A. Pierzchalski, Ricci curvature and quasiconformal deformations of a Riemannian manifold”, Manuscripta Math. 66 (1989), 113–127. Zbl0698.53021MR1027303
- [24] H. M. Reimann, Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci.9 (1982), 160–174. Zbl0491.35027MR664106
- [25] H. M. Reimann, Invariant system of differential operators, Proc. of a seminar held in Torino May-June 1982, Topics in modern harmonic analysis, Instituto di Alta Matematica, Roma, 1983. Zbl0564.35017MR748882
- [26] E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representation od the rotation group, Amer J. Math.90 (1968), 163–196. Zbl0157.18303MR223492
- [27] E. M. Stein and G. Weiss, “Fourier Analysis on Euclidean Spaces”, Princeton University Press, 1971. Zbl0232.42007MR304972
- [28] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschingungen einer beliebig gestalten elastischen Koerpers, Rendiconti Cir. Mat. Palermo39 (1915), 1–49. JFM45.1016.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.