The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the Picard problem for hyperbolic differential equations in Banach spaces

Antoni Sadowski — 2003

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

B. Rzepecki in [5] examined the Darboux problem for the hyperbolic equation z x y = f ( x , y , z , z x y ) on the quarter-plane x ≥ 0, y ≥ 0 via a fixed point theorem of B.N. Sadovskii [6]. The aim of this paper is to study the Picard problem for the hyperbolic equation z x y = f ( x , y , z , z x , z x y ) using a method developed by A. Ambrosetti [1], K. Goebel and W. Rzymowski [2] and B. Rzepecki [5].

Page 1

Download Results (CSV)