On the Picard problem for hyperbolic differential equations in Banach spaces
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2003)
- Volume: 23, Issue: 1, page 31-37
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Ambrosetti, Un teorema di essistenza per le equazioni differenziali nagli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
- [2] K. Goebel, W. Rzymowski, An existence theorem for the equations x' = f(t,x) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. 18 (1970), 367-370. Zbl0202.10003
- [3] P. Negrini, Sul problema di Darboux negli spazi di Banach, Bolletino U.M.I. (5) 17-A (1980), 156-160.
- [4] B. Rzepecki, Measure of Non-Compactness and Krasnoselskii's Fixed Point Theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. 24 (1976), 861-866. Zbl0341.47039
- [5] B. Rzepecki, On the existence of solution of the Darboux problem for the hyperbolic partial differential equations in Banach Spaces, Rend. Sem. Mat. Univ. Padova 76 (1986). Zbl0656.35087
- [6] B.N. Sadovskii, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.