Partial differential equations in Banach spaces involving nilpotent linear operators
Let E be a Banach space. We consider a Cauchy problem of the type ⎧ in , ⎨ ⎩ in , j=0,...,k-1, where each is a given continuous linear operator from E into itself. We prove that if the operators are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions whose derivatives are equi-bounded on each bounded subset of .