The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let E be a Banach space. We consider a Cauchy problem of the type
⎧ in ,
⎨
⎩ in , j=0,...,k-1,
where each is a given continuous linear operator from E into itself. We prove that if the operators are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions whose derivatives are equi-bounded on each bounded subset of .
Download Results (CSV)