Partial differential equations in Banach spaces involving nilpotent linear operators
Antonia Chinnì; Paolo Cubiotti
Annales Polonici Mathematici (1996)
- Volume: 65, Issue: 1, page 67-80
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Cattabriga, On the surjectivity of differential polynomials on Gevrey spaces, Rend. Sem. Mat. Univ. Politec. Torino (1983), special issue on ``Linear partial and pseudodifferential operators'', 81-89. Zbl0561.35008
- [2] L. Cattabriga and E. De Giorgi, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027.
- [3] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-56), 271-355.
- [4] B. Ricceri, On the well-posedness of the Cauchy problem for a class of linear partial differential equations of infinite order in Banach spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), 623-640. Zbl0810.35169
- [5] F. Trèves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, 1966. Zbl0164.40602