Algunos resultados sobre el bordismo de variedades de homología.
Some topological properties of inverse limits of sequences with proper bonding maps are studied. We show that (non-empty) limits of euclidean half-lines are one-ended generalized continua. We also prove the non-existence of a universal object for such limits with respect to closed embeddings. A further result states that limits of end-preserving sequences of euclidean lines are two-ended generalized continua.
We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.
In this note we show that -skeletons and -skeletons of -pseudomanifolds with full boundary are -connected graphs and -connected -complexes, respectively. This generalizes previous results due to Barnette and Woon.
Page 1