We give a criterion, based on the automorphism group, for certain cyclic covers of the projective line to be defined over their field of moduli. An example of a cyclic cover of the complex projective line with field of moduli  that can not be defined over  is also given.
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
Given a finite -group  acting on a smooth projective curve  over an algebraically closed field  of characteristic , the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of  acting on the space  of global holomorphic quadratic differentials on . We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when  is cyclic or when the action of  on  is weakly...
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
We determine all modular curves X(N) (with N ≥ 7) that are hyperelliptic or bielliptic. We also give a proof that the automorphism group of X(N) is PSL₂(ℤ/Nℤ), whence it coincides with the normalizer of Γ(N) in PSL₂(ℝ) modulo ±Γ(N).
                    
                 
                
                    
                
            
        
        
        
            
                Download Results (CSV)