Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Polynomial quotients: Interpolation, value sets and Waring's problem

Zhixiong ChenArne Winterhof — 2015

Acta Arithmetica

For an odd prime p and an integer w ≥ 1, polynomial quotients q p , w ( u ) are defined by q p , w ( u ) ( u w - u w p ) / p m o d p with 0 q p , w ( u ) p - 1 , u ≥ 0, which are generalizations of Fermat quotients q p , p - 1 ( u ) . First, we estimate the number of elements 1 u < N p for which f ( u ) q p , w ( u ) m o d p for a given polynomial f(x) over the finite field p . In particular, for the case f(x)=x we get bounds on the number of fixed points of polynomial quotients. Second, before we study the problem of estimating the smallest number (called the Waring number) of summands needed to express each element of...

Page 1

Download Results (CSV)