The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In 1990, Comfort asked Question 477 in the survey book “Open Problems in Topology”: Is there, for every (not necessarily infinite) cardinal number , a topological group G such that is countably compact for all cardinals γ < α, but is not countably compact?
Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively under . Recently, Tomita showed that every finite cardinal answers Comfort’s question in the affirmative, also from . However, the question has remained...
It was known that free Abelian groups do not admit a Hausdorff compact group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size admits a Hausdorff countably compact group topology. We show that no Hausdorff group topology on a free Abelian group makes its -th power countably compact. In particular, a free Abelian group does not admit a Hausdorff -compact nor a sequentially compact group topology. Under CH, we show that a free Abelian group does not admit a Hausdorff...
We will show that under for each there exists a group whose -th power is countably compact but whose -th power is not countably compact. In particular, for each there exists and a group whose -th power is countably compact but the -st power is not countably compact.
Under 𝔭 = 𝔠, we prove that it is possible to endow the free abelian group of cardinality 𝔠 with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.
For , we say that is quasi -compact, if for every there is such that , where is the Stone-Čech extension of . In this context, a space is countably compact iff is quasi -compact. If is quasi -compact and is either finite or countable discrete in , then all powers of are countably compact. Assuming , we give an example of a countable subset and a quasi -compact space whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi...
In this paper, we deal with the product of spaces which are either -spaces or -spaces, for some . These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are -spaces, and every -space is a -space, for every . We prove that if is a set of spaces whose product is a -space, then there is such that is countably compact for every . As a consequence, is a -space iff is countably compact, and if is a -space, then all...
We show that if is an uncountable AD (almost disjoint) family of subsets of then the space does not admit a continuous selection; moreover, if is maximal then does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
Following Malykhin, we say that a space is if contains a family of dense subsets such that and the intersection of every two elements of is nowhere dense, where is a nonempty open subset of is the of . We show that, for every cardinal , there is a compact extraresolvable space of size and dispersion character . In connection with some cardinal inequalities, we prove the equivalence of the following statements: 1) , 2) is extraresolvable and 3) is extraresolvable, where ...
Download Results (CSV)