The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Homogeneous Einstein metrics on Stiefel manifolds

Andreas Arvanitoyeorgos — 1996

Commentationes Mathematicae Universitatis Carolinae

A Stiefel manifold V k 𝐑 n is the set of orthonormal k -frames in 𝐑 n , and it is diffeomorphic to the homogeneous space S O ( n ) / S O ( n - k ) . We study S O ( n ) -invariant Einstein metrics on this space. We determine when the standard metric on S O ( n ) / S O ( n - k ) is Einstein, and we give an explicit solution to the Einstein equation for the space V 2 𝐑 n .

Metrics with homogeneous geodesics on flag manifolds

Dimitri V. AlekseevskyAndreas Arvanitoyeorgos — 2002

Commentationes Mathematicae Universitatis Carolinae

A geodesic of a homogeneous Riemannian manifold ( M = G / K , g ) is called homogeneous if it is an orbit of an one-parameter subgroup of G . In the case when M = G / H is a naturally reductive space, that is the G -invariant metric g is defined by some non degenerate biinvariant symmetric bilinear form B , all geodesics of M are homogeneous. We consider the case when M = G / K is a flag manifold, i.eȧn adjoint orbit of a compact semisimple Lie group G , and we give a simple necessary condition that M admits a non-naturally reductive...

Page 1

Download Results (CSV)