Homogeneous Einstein metrics on Stiefel manifolds

Andreas Arvanitoyeorgos

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 3, page 627-634
  • ISSN: 0010-2628

Abstract

top
A Stiefel manifold V k 𝐑 n is the set of orthonormal k -frames in 𝐑 n , and it is diffeomorphic to the homogeneous space S O ( n ) / S O ( n - k ) . We study S O ( n ) -invariant Einstein metrics on this space. We determine when the standard metric on S O ( n ) / S O ( n - k ) is Einstein, and we give an explicit solution to the Einstein equation for the space V 2 𝐑 n .

How to cite

top

Arvanitoyeorgos, Andreas. "Homogeneous Einstein metrics on Stiefel manifolds." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 627-634. <http://eudml.org/doc/247909>.

@article{Arvanitoyeorgos1996,
abstract = {A Stiefel manifold $V_k\mathbf \{R\}^n$ is the set of orthonormal $k$-frames in $\mathbf \{R\}^n$, and it is diffeomorphic to the homogeneous space $SO(n)/SO(n-k)$. We study $SO(n)$-invariant Einstein metrics on this space. We determine when the standard metric on $SO(n)/SO(n-k)$ is Einstein, and we give an explicit solution to the Einstein equation for the space $V_2\mathbf \{R\}^n$.},
author = {Arvanitoyeorgos, Andreas},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds; homogeneous space; homogeneous Riemannian metric; Einstein metric; Stiefel manifold},
language = {eng},
number = {3},
pages = {627-634},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Homogeneous Einstein metrics on Stiefel manifolds},
url = {http://eudml.org/doc/247909},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Arvanitoyeorgos, Andreas
TI - Homogeneous Einstein metrics on Stiefel manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 627
EP - 634
AB - A Stiefel manifold $V_k\mathbf {R}^n$ is the set of orthonormal $k$-frames in $\mathbf {R}^n$, and it is diffeomorphic to the homogeneous space $SO(n)/SO(n-k)$. We study $SO(n)$-invariant Einstein metrics on this space. We determine when the standard metric on $SO(n)/SO(n-k)$ is Einstein, and we give an explicit solution to the Einstein equation for the space $V_2\mathbf {R}^n$.
LA - eng
KW - Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds; homogeneous space; homogeneous Riemannian metric; Einstein metric; Stiefel manifold
UR - http://eudml.org/doc/247909
ER -

References

top
  1. Besse A.L., Einstein Manifolds, Springer-Verlag, Berlin, 1987. Zbl1147.53001MR0867684
  2. Berger M., Quelques formules de variation pour une structure riemannienne, Ann. Sci. Éc. Norm. Sup. 3 (1970), 285-294. (1970) Zbl0204.54802MR0278238
  3. Cheeger J., Ebin D.G., Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975. Zbl1142.53003MR0458335
  4. James I.M., The Topology of Stiefel Manifolds, Cambridge University Press, Lecture Note Series 24, Great Britain, 1976. Zbl0337.55017MR0431239
  5. Jensen G.R., Einstein metrics on principal fibre bundles, J. Diff. Geom. 8 (1973), 599-614. (1973) Zbl0284.53038MR0353209
  6. Kobayashi S., Topology of positively pinched Kähler manifolds, Tôhoku Math. J. 15 (1963), 121-139. (1963) Zbl0114.37601MR0154235
  7. Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vol II, Interscience, New York, 1969. Zbl0526.53001MR0238225
  8. Kowalski O., Vlášek Z., Homogeneous Einstein metrics on Aloff-Wallach spaces, Diff. Geom. Appl. 3 (1993), 157-167. (1993) MR1243541
  9. Sagle A.A., Some homogeneous Einstein manifolds, Nagoya Math. J. 39 (1970), 81-106. (1970) Zbl0198.54801MR0271867
  10. Wang M., Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49.1 (1982), 23-28. (1982) Zbl0488.53035MR0650366
  11. Wang M., Ziller W., On normal homogeneous Einstein metrics, Ann. Sci. Éc. Norm. Sup. 18 (1985), 563-633. (1985) MR0839687

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.