The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator

Arzu BoysalMichèle Vergne — 2009

Annales de l’institut Fourier

Let P ( s ) be a family of rational polytopes parametrized by inequations. It is known that the volume of P ( s ) is a locally polynomial function of the parameters. Similarly, the number of integral points in P ( s ) is a locally quasi-polynomial function of the parameters. Paul-Émile Paradan proved a jump formula for this function, when crossing a wall. In this article, we give an algebraic proof of this formula. Furthermore, we give a residue formula for the jump, which enables us to compute it.

Multiple Bernoulli series, an Euler-MacLaurin formula, and Wall crossings

Arzu BoysalMichèle Vergne — 2012

Annales de l’institut Fourier

We study multiple Bernoulli series associated to a sequence of vectors generating a lattice in a vector space. The associated multiple Bernoulli series is a periodic and locally polynomial function, and we give an explicit formula (called wall crossing formula) comparing the polynomial densities in two adjacent domains of polynomiality separated by a hyperplane. We also present a formula in the spirit of Euler-MacLaurin formula. Finally, we give a decomposition formula for the Bernoulli series describing...

Page 1

Download Results (CSV)