The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the Hausdorff dimension of measures whose weight distribution satisfies a Markov non-homogeneous property. We prove, in particular, that the Hausdorff dimensions of this kind of measures coincide with their lower Rényi dimensions (entropy). Moreover, we show that the packing dimensions equal the upper Rényi dimensions. As an application we get a continuity property of the Hausdorff dimension of the measures, when viewed as a function of the distributed weights under the norm.
We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.
Download Results (CSV)