Dimension of the harmonic measure of non-homogeneous Cantor sets

Athanasios Batakis[1]

  • [1] Université d’Orléans Département de Mathématiques MAPMO BP 6759 45067 Orléans cedex 2 (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 6, page 1617-1631
  • ISSN: 0373-0956

Abstract

top
We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.

How to cite

top

Batakis, Athanasios. "Dimension of the harmonic measure of non-homogeneous Cantor sets." Annales de l’institut Fourier 56.6 (2006): 1617-1631. <http://eudml.org/doc/10186>.

@article{Batakis2006,
abstract = {We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.},
affiliation = {Université d’Orléans Département de Mathématiques MAPMO BP 6759 45067 Orléans cedex 2 (France)},
author = {Batakis, Athanasios},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic measure; Cantor sets; fractals; Hausdorff dimension; entropy; harmonic measure; Cantor set; exact measure; code space},
language = {eng},
number = {6},
pages = {1617-1631},
publisher = {Association des Annales de l’institut Fourier},
title = {Dimension of the harmonic measure of non-homogeneous Cantor sets},
url = {http://eudml.org/doc/10186},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Batakis, Athanasios
TI - Dimension of the harmonic measure of non-homogeneous Cantor sets
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1617
EP - 1631
AB - We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.
LA - eng
KW - Harmonic measure; Cantor sets; fractals; Hausdorff dimension; entropy; harmonic measure; Cantor set; exact measure; code space
UR - http://eudml.org/doc/10186
ER -

References

top
  1. A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Annales de l’ Institut Fourier, Grenoble 28 (1978), 169-213 Zbl0377.31001MR513885
  2. Z. Balogh, I. Popovici, A. Volberg, Conformally maximal polynomial-like dynamics and invariant harmonic measure, Ergodic Theory and Dynamical Systems 17 (1997), 1-27 Zbl0876.58036MR1440765
  3. A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. 21 (1996), 255-270 Zbl0849.31005MR1404086
  4. A. Batakis, Théorie du potentiel : 1. Sur les domaines Poissoniens 2. Sur la mesure harmonique des ensembles de Cantor, (1997) 
  5. A. Batakis, A continuity property of the dimension of harmonic measure of Cantor sets under perturbations, 36 (2000), 87-107 Zbl0946.37018
  6. A. Batakis, On entropy and Hausdorff dimension of measures defined through a Markov process, (2002) Zbl1086.28004
  7. A. Batakis, Y. Heurteaux, On relations between entropy and Hausdorff dimension of measures, (2002) Zbl1046.28003MR1946341
  8. A. Beardon, On the Hausdorff dimension of general Cantor sets, Proceedings of the Cambridge Philosophical Society 61 (1965), 679-694 Zbl0145.05502MR177083
  9. P. Billingsley, Ergodic Theory and Information, (1965), John Wiley & Sons Zbl0141.16702MR192027
  10. I. Binder, N. Makarov, S. Smirnov, Harmonic measure and polynomial Julia sets, (2002) Zbl1036.30017
  11. M. Brelot, Axiomatique des fonctions harmoniques, (1969), Les presses de l’Université de Montréal Zbl0148.10401MR247124
  12. L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. 10 (1985), 113-123 Zbl0593.31004MR802473
  13. J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, (1984), Springer-Verlag New York Zbl0549.31001MR731258
  14. A.H. Fan, Sur la dimension des mesures, Studia Math. 111 (1994), 1-17 Zbl0805.28002
  15. P. Hall, C. C. Heyde, Martingale theory and its applications, (1980), Academic Press (New York) Zbl0462.60045MR624435
  16. L. L. Helms, Introduction to Potential Theory, (1969), John Wiley & Sons Zbl0188.17203MR261018
  17. Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), 309-338 Zbl0903.28005MR1625871
  18. M. Lyubich, A. Volberg, A comparison of harmonic and balanced measures on Cantor repellors, Journal of Fourier Analysis and Applications (Special Issue J.-P. Kahane) (1995), 379-399 Zbl0891.58024
  19. N. Makarov, Fine structure of harmonic measure, Saint Petersbourg Mathematical Journal 10 (1999), 217-268 Zbl0909.30016MR1629379
  20. N. Makarov, A. Volberg, On the harmonic measure of discontinuous fractals, (1986) 
  21. P. Mattila, Geometric measure theory, (1995), Cambridge University Press Zbl0883.28006
  22. M. Urbanski, A. Zdunik, Hausdorff dimension of harmonic measure for self conformal maps, (2000) Zbl1020.37008
  23. A. Volberg, On harmonic measure of self-similar sets in the plane, Harmonic Analysis and Discrete Potential theory (1992), Plenum Press MR1222465
  24. A. Volberg, On the dimension of harmonic measure of Cantor-type repellers, Michigan Mathematical Journal 40 (1993), 239-258 Zbl0797.30022MR1226830
  25. L. Young, Dimension, entropy and Lyapounov exponents, Ergod. Th. & Dynam. Sys. 2 (1982), 109-124 Zbl0523.58024MR684248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.