Dimension of the harmonic measure of non-homogeneous Cantor sets
- [1] Université d’Orléans Département de Mathématiques MAPMO BP 6759 45067 Orléans cedex 2 (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1617-1631
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBatakis, Athanasios. "Dimension of the harmonic measure of non-homogeneous Cantor sets." Annales de l’institut Fourier 56.6 (2006): 1617-1631. <http://eudml.org/doc/10186>.
@article{Batakis2006,
abstract = {We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.},
affiliation = {Université d’Orléans Département de Mathématiques MAPMO BP 6759 45067 Orléans cedex 2 (France)},
author = {Batakis, Athanasios},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic measure; Cantor sets; fractals; Hausdorff dimension; entropy; harmonic measure; Cantor set; exact measure; code space},
language = {eng},
number = {6},
pages = {1617-1631},
publisher = {Association des Annales de l’institut Fourier},
title = {Dimension of the harmonic measure of non-homogeneous Cantor sets},
url = {http://eudml.org/doc/10186},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Batakis, Athanasios
TI - Dimension of the harmonic measure of non-homogeneous Cantor sets
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1617
EP - 1631
AB - We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.
LA - eng
KW - Harmonic measure; Cantor sets; fractals; Hausdorff dimension; entropy; harmonic measure; Cantor set; exact measure; code space
UR - http://eudml.org/doc/10186
ER -
References
top- A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Annales de l’ Institut Fourier, Grenoble 28 (1978), 169-213 Zbl0377.31001MR513885
- Z. Balogh, I. Popovici, A. Volberg, Conformally maximal polynomial-like dynamics and invariant harmonic measure, Ergodic Theory and Dynamical Systems 17 (1997), 1-27 Zbl0876.58036MR1440765
- A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. 21 (1996), 255-270 Zbl0849.31005MR1404086
- A. Batakis, Théorie du potentiel : 1. Sur les domaines Poissoniens 2. Sur la mesure harmonique des ensembles de Cantor, (1997)
- A. Batakis, A continuity property of the dimension of harmonic measure of Cantor sets under perturbations, 36 (2000), 87-107 Zbl0946.37018
- A. Batakis, On entropy and Hausdorff dimension of measures defined through a Markov process, (2002) Zbl1086.28004
- A. Batakis, Y. Heurteaux, On relations between entropy and Hausdorff dimension of measures, (2002) Zbl1046.28003MR1946341
- A. Beardon, On the Hausdorff dimension of general Cantor sets, Proceedings of the Cambridge Philosophical Society 61 (1965), 679-694 Zbl0145.05502MR177083
- P. Billingsley, Ergodic Theory and Information, (1965), John Wiley & Sons Zbl0141.16702MR192027
- I. Binder, N. Makarov, S. Smirnov, Harmonic measure and polynomial Julia sets, (2002) Zbl1036.30017
- M. Brelot, Axiomatique des fonctions harmoniques, (1969), Les presses de l’Université de Montréal Zbl0148.10401MR247124
- L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. 10 (1985), 113-123 Zbl0593.31004MR802473
- J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, (1984), Springer-Verlag New York Zbl0549.31001MR731258
- A.H. Fan, Sur la dimension des mesures, Studia Math. 111 (1994), 1-17 Zbl0805.28002
- P. Hall, C. C. Heyde, Martingale theory and its applications, (1980), Academic Press (New York) Zbl0462.60045MR624435
- L. L. Helms, Introduction to Potential Theory, (1969), John Wiley & Sons Zbl0188.17203MR261018
- Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), 309-338 Zbl0903.28005MR1625871
- M. Lyubich, A. Volberg, A comparison of harmonic and balanced measures on Cantor repellors, Journal of Fourier Analysis and Applications (Special Issue J.-P. Kahane) (1995), 379-399 Zbl0891.58024
- N. Makarov, Fine structure of harmonic measure, Saint Petersbourg Mathematical Journal 10 (1999), 217-268 Zbl0909.30016MR1629379
- N. Makarov, A. Volberg, On the harmonic measure of discontinuous fractals, (1986)
- P. Mattila, Geometric measure theory, (1995), Cambridge University Press Zbl0883.28006
- M. Urbanski, A. Zdunik, Hausdorff dimension of harmonic measure for self conformal maps, (2000) Zbl1020.37008
- A. Volberg, On harmonic measure of self-similar sets in the plane, Harmonic Analysis and Discrete Potential theory (1992), Plenum Press MR1222465
- A. Volberg, On the dimension of harmonic measure of Cantor-type repellers, Michigan Mathematical Journal 40 (1993), 239-258 Zbl0797.30022MR1226830
- L. Young, Dimension, entropy and Lyapounov exponents, Ergod. Th. & Dynam. Sys. 2 (1982), 109-124 Zbl0523.58024MR684248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.