We introduce the notion of order weakly sequentially continuous lattice operations of a Banach lattice, use it to generalize a result regarding the characterization of order weakly compact operators, and establish its converse. Also, we derive some interesting consequences.
We characterize Banach lattices on which every positive almost Dunford-Pettis operator is weakly compact.
We establish some sufficient conditions under which the subspaces of Dunford-Pettis operators, of M-weakly compact operators, of L-weakly compact operators, of weakly compact operators, of semi-compact operators and of compact operators coincide and we give some consequences.
The paper contains some applications of the notion of sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an sets. As a sequence characterization of such operators, we see that an operator from a Banach space into a Banach lattice is order -Dunford-Pettis, if and only if for for every weakly null...
Download Results (CSV)