Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Some spectral inequalities involving generalized scalar operators

B. AupetitD. Drissi — 1994

Studia Mathematica

In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes,...

Page 1

Download Results (CSV)