Geometric description of the connecting homomorphism for Witt groups.
We start with a small paradigm shift about group representations, namely the observation that restriction to a subgroup can be understood as an extension-of-scalars. We deduce that, given a group , the derived and the stable categories of representations of a subgroup can be constructed out of the corresponding category for by a purely triangulated-categorical construction, analogous to étale extension in algebraic geometry. In the case of finite groups, we then use descent methods to investigate...
Let be a field of characteristic . Let be a finite group of order divisible by and a -Sylow subgroup of . We describe the kernel of the restriction homomorphism , for the group of endotrivial representations. Our description involves functions that we call weak -homomorphisms. These are generalizations to possibly non-normal of the classical homomorphisms appearing in the normal case.
Page 1