A Gersten–Witt spectral sequence for regular schemes

Paul Balmer; Charles Walter

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 1, page 127-152
  • ISSN: 0012-9593

How to cite

top

Balmer, Paul, and Walter, Charles. "A Gersten–Witt spectral sequence for regular schemes." Annales scientifiques de l'École Normale Supérieure 35.1 (2002): 127-152. <http://eudml.org/doc/82563>.

@article{Balmer2002,
author = {Balmer, Paul, Walter, Charles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Witt groups of regular schemes; Gersten-Witt complex; Gersten-Witt spectral sequence; purity},
language = {eng},
number = {1},
pages = {127-152},
publisher = {Elsevier},
title = {A Gersten–Witt spectral sequence for regular schemes},
url = {http://eudml.org/doc/82563},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Balmer, Paul
AU - Walter, Charles
TI - A Gersten–Witt spectral sequence for regular schemes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 1
SP - 127
EP - 152
LA - eng
KW - Witt groups of regular schemes; Gersten-Witt complex; Gersten-Witt spectral sequence; purity
UR - http://eudml.org/doc/82563
ER -

References

top
  1. [1] Balmer P., Derived Witt groups of a scheme, J. Pure Appl. Algebra141 (1999) 101-129. Zbl0972.18006MR1706376
  2. [2] Balmer P., Triangular Witt groups. Part I: The 12-term localization exact sequence, 19 (2000) 311-363. Zbl0953.18003MR1763933
  3. [3] Balmer P., Triangular Witt groups. Part II: From usual to derived, Math. Z.236 (2001) 351-382. Zbl1004.18010MR1815833
  4. [4] Balmer P., Walter C., Derived Witt groups and Grothendieck duality, in preparation. 
  5. [5] Beilinson A., Bernstein J., Deligne P., Faisceaux pervers, Astérisque100 (1982). Zbl0536.14011MR751966
  6. [6] Cartan H., Eilenberg S., Homological Algebra, Princeton Univ. Press, 1956. Zbl0075.24305MR77480
  7. [7] Eisenbud D., Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, 1995. Zbl0819.13001MR1322960
  8. [8] Ettner A., Zur Residuenabbildung in der Theorie quadratischer Formen, Diplomarbeit, Regensburg, 1999. 
  9. [9] Fernández-Carmena F., On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann.277 (1987) 453-468. Zbl0641.14003MR891586
  10. [10] Hartshorne R., Algebraic Geometry, Springer-Verlag, 1977. Zbl0367.14001MR463157
  11. [11] Keller B., On the cyclic homology of exact categories, J. Pure Appl. Algebra136 (1999) 1-56. Zbl0923.19004MR1667558
  12. [12] Keller B., Appendix: On Gabriel–Roiter's axioms for exact categories, Trans. Amer. Math. Soc.351 (1999) 677-681. MR1608305
  13. [13] Mac Lane S., Categories for the Working Mathematician, Springer-Verlag, 1998. Zbl0906.18001MR354798
  14. [14] Milnor J., Husemoller D., Symmetric Bilinear Forms, Springer-Verlag, 1973. Zbl0292.10016MR506372
  15. [15] Neeman A., The derived category of an exact category, J. Algebra135 (1990) 388-394. Zbl0753.18004MR1080854
  16. [16] Ojanguren M., Parimala R., Sridharan R., Suresh V., Witt groups of the punctured spectrum of a 3-dimensional local ring and a purity theorem, J. London Math. Soc.59 (1999) 521-540. Zbl0930.19003MR1709663
  17. [17] Ojanguren M., Panin I., A purity theorem for the Witt group, Ann. Scient. Éc. Norm. Sup. (4)32 (1999) 71-86. Zbl0980.11025MR1670591
  18. [18] Pardon W., A relation between Witt groups and 0-cycles in a regular ring, in: Springer Lect. Notes Math., 1046, 1984, pp. 261-328. Zbl0531.10024MR750687
  19. [19] Pardon W., The filtered Gersten–Witt resolution for regular schemes, Preprint, 2000 , http://www.math.uiuc.edu/K-theory/0419/. 
  20. [20] Parimala R., Witt groups of affine three-folds, Duke Math. J.57 (1988) 947-954. Zbl0674.14029MR975129
  21. [21] Quebbemann H.-G., Scharlau W., Schulte M., Quadratic and Hermitian forms in additive and Abelian categories, J. Algebra59 (1979) 264-289. Zbl0412.18016MR543249
  22. [22] Ranicki A., Algebraic L-theory. I. Foundations, Proc. London Math. Soc. (3)27 (1973) 101-125. Zbl0269.18009MR414661
  23. [23] Ranicki A., Additive L-theory, 3 (1989) 163-195. Zbl0686.57017MR1029957
  24. [24] Rost M., http://www.math.ohio-state.edu/~rost/schmid.html. 
  25. [25] Schmid M., Wittringhomologie, Ph.D. dissertation, Regensburg 1997. Cf. [24]. 
  26. [26] Verdier J.-L., Des catégories dérivées des catégories abéliennes (Thèse de doctorat d'état, Paris, 1967), Astérisque239 (1996). Zbl0882.18010MR1453167
  27. [27] Walter C., Obstructions to the Existence of Symmetric Resolutions, in preparation. 
  28. [28] Weibel C., An Introduction to Homological Algebra, Cambridge Univ. Press, 1994. Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.