The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Equivariant mappings from vector product into G -space of vectors and ε -vectors with G = O ( n , 1 , )

Barbara GlancAleksander MisiakZofia Stepień — 2005

Mathematica Bohemica

In this note all vectors and ε -vectors of a system of m n linearly independent contravariant vectors in the n -dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation F ( A 1 u , A 2 u , , A m u ) = ( det A ) λ · A · F ( 1 u , 2 u , , m u ) with λ = 0 and λ = 1 , for an arbitrary pseudo-orthogonal matrix A of index one and given vectors 1 u , 2 u , , m u .

Equivariant mappings from vector product into G -spaces of ϕ -scalars with G = O n , 1 ,

Barbara GlancAleksander MisiakMaria Szmuksta-Zawadzka — 2007

Mathematica Bohemica

There are four kinds of scalars in the n -dimensional pseudo-Euclidean geometry of index one. In this note, we determine all scalars as concomitants of a system of m n linearly independent contravariant vectors of two so far missing types. The problem is resolved by finding the general solution of the functional equation F ( A 1 u , A 2 u , , A m u ) = ϕ A · F ( 1 u , 2 u , , m u ) using two homomorphisms ϕ from a group G into the group of real numbers 0 = 0 , · .

Page 1

Download Results (CSV)