Equivariant mappings from vector product into -space of vectors and -vectors with
Barbara Glanc; Aleksander Misiak; Zofia Stepień
Mathematica Bohemica (2005)
- Volume: 130, Issue: 3, page 265-275
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGlanc, Barbara, Misiak, Aleksander, and Stepień, Zofia. "Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb {R})$." Mathematica Bohemica 130.3 (2005): 265-275. <http://eudml.org/doc/249605>.
@article{Glanc2005,
abstract = {In this note all vectors and $\varepsilon $-vectors of a system of $m\le n$ linearly independent contravariant vectors in the $n$-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F( A\{\underset\{1\}\{\rightarrow \}u\}, A\{\underset\{2\}\{\rightarrow \}u\},\dots ,A\{\underset\{m\}\{\rightarrow \}u\}) =( \det A)^\{\lambda \}\cdot A\cdot F( \{\underset\{1\}\{\rightarrow \}u\},\{\underset\{2\}\{\rightarrow \}u\},\dots , \{\underset\{m\}\{\rightarrow \}u\})$ with $\lambda =0$ and $\lambda =1$, for an arbitrary pseudo-orthogonal matrix $A$ of index one and given vectors $ \{\underset\{1\}\{\rightarrow \}u\},\{\underset\{2\}\{\rightarrow \}u\},\dots ,\{\underset\{m\}\{\rightarrow \}u\}.$},
author = {Glanc, Barbara, Misiak, Aleksander, Stepień, Zofia},
journal = {Mathematica Bohemica},
keywords = {$G$-space; equivariant map; pseudo-Euclidean geometry; functional equation; equivariant map; pseudo-Euclidean geometry; functional equation},
language = {eng},
number = {3},
pages = {265-275},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb \{R\})$},
url = {http://eudml.org/doc/249605},
volume = {130},
year = {2005},
}
TY - JOUR
AU - Glanc, Barbara
AU - Misiak, Aleksander
AU - Stepień, Zofia
TI - Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb {R})$
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 3
SP - 265
EP - 275
AB - In this note all vectors and $\varepsilon $-vectors of a system of $m\le n$ linearly independent contravariant vectors in the $n$-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F( A{\underset{1}{\rightarrow }u}, A{\underset{2}{\rightarrow }u},\dots ,A{\underset{m}{\rightarrow }u}) =( \det A)^{\lambda }\cdot A\cdot F( {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots , {\underset{m}{\rightarrow }u})$ with $\lambda =0$ and $\lambda =1$, for an arbitrary pseudo-orthogonal matrix $A$ of index one and given vectors $ {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{m}{\rightarrow }u}.$
LA - eng
KW - $G$-space; equivariant map; pseudo-Euclidean geometry; functional equation; equivariant map; pseudo-Euclidean geometry; functional equation
UR - http://eudml.org/doc/249605
ER -
References
top- Functionalgleichungen der Theorie der geometrischen Objekte, P.W.N. Warszawa, 1960. (1960) MR0133763
- Sur deux formes équivalentes de la notion de -orientation de la géométrie de Klein, Publ. Math. Debrecen 35 (1988), 43–50. (1988) MR0971951
- 10.1007/BF02018051, Period. Math. Hung. 8 (1977), 83–89. (1977) Zbl0335.50001MR0493695DOI10.1007/BF02018051
- Equivariant maps between certain -spaces with , Math. Bohem. 126 (2001), 555–560. (2001) MR1970258
- Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1, Publ. Math. Debrecen 57 (2000), 55–69. (2000) Zbl0966.53012MR1771671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.