The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Characterization of n -vertex graphs with metric dimension n - 3

Mohsen JannesariBehnaz Omoomi — 2014

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , ... , w k } of vertices and a vertex v in a connected graph G , the ordered k -vector r ( v | W ) : = ( d ( v , w 1 ) , d ( v , w 2 ) , ... , d ( v , w k ) ) is called the metric representation of v with respect to W , where d ( x , y ) is the distance between vertices x and y . A set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W . The minimum cardinality of a resolving set for G is its metric dimension. In this paper, we characterize all graphs of order n with metric dimension n - 3 .

Page 1

Download Results (CSV)