On asymptotic dimension of groups.
We answer a question of I. Juhasz by showing that MA CH does not imply that every compact ccc space of countable -character is separable. The space constructed has the additional property that it does not map continuously onto .
We apply the general theory of -Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness . In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
We prove an exact formula for the asymptotic dimension (asdim) of a free product. Our main theorem states that if A and B are finitely generated groups with asdim A = n and asdim B ≤ n, then asdim (A*B) = max n,1.
Page 1