Even partition functions.
E. Landau has given an asymptotic estimate for the number of integers up to x whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg-Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if ω(m) (resp. Ω(m)) denotes the number of prime factors of m without multiplicity (resp. with multiplicity), we give an asymptotic estimate as x → ∞ of the number of integers m satisfying , all prime factors of m are congruent...
Improving on some results of J.-L. Nicolas [], the elements of the set , for which the partition function (i.e. the number of partitions of with parts in ) is even for all are determined. An asymptotic estimate to the counting function of this set is also given.
Page 1