We prove that the pseudovariety of monoids of Krohn-Rhodes complexity at most is not finitely based for all . More specifically, for each pair of positive integers , we construct a monoid of complexity , all of whose -generated submonoids have complexity at most .
We prove that the pseudovariety of monoids of Krohn-Rhodes
complexity at most is not finitely based for all . More
specifically, for each pair of positive integers , we
construct a monoid of complexity , all of whose -generated
submonoids have complexity at most .
In a highly influential paper, Bidigare, Hanlon and Rockmore showed that a number of popular Markov chains are random walks on the faces of a hyperplane arrangement. Their analysis of these Markov chains took advantage of the monoid structure on the set of faces. This theory was later extended by Brown to a larger class of monoids called left regular bands. In both cases, the representation theory of these monoids played a prominent role. In particular, it was used to compute the spectrum of the...
Download Results (CSV)