Pseudo-isotopies de plongements en codimension 2
Using a new definition of the second and third Johsnon homomorphisms, we simplify and extend the work of Morita on the Casson invariant of homology-spheres defined by Heegard splittings. In particular, we calculate the Casson invariant of the homology-sphere obtained by gluing two handlebodies along a homeomorphism of the boundary belonging to the Torelli subgroup.
Using Fox differential calculus, for any positive integer , we construct a map on the mapping class group of a surface of genus with one boundary component, such that, when restricted to an appropriate subgroup, it coincides with the Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic extension to of the second and third Johnson-Morita homomorphisms.
Page 1