The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Positive solutions of critical quasilinear elliptic equations in R N

Paul A. BindingPavel DrábekYin Xi Huang — 1999

Mathematica Bohemica

We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in N , where λ , α , 1 < p < N , p * = N p / ( N - p ) , the critical Sobolev exponent, and 1 < q < p * , q p . Let λ 1 + > 0 be the principal eigenvalue of -pu=g(x)|u|p-2u    in ,        g(x)|u|p>0, (2) with u 1 + > 0 the associated eigenfunction. We prove that, if N f | u 1 + | p * < 0 , N h | u 1 + | q > 0 if 1 < q < p and N h | u 1 + | q < 0 if p < q < p * , then there exist λ * > λ 1 + and α * > 0 , such that for λ [ λ 1 + , λ * ) and α [ 0 , α * ) , (1) has at least one positive solution.

Page 1

Download Results (CSV)