Positive solutions of critical quasilinear elliptic equations in
Paul A. Binding; Pavel Drábek; Yin Xi Huang
Mathematica Bohemica (1999)
- Volume: 124, Issue: 2-3, page 149-166
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBinding, Paul A., Drábek, Pavel, and Huang, Yin Xi. "Positive solutions of critical quasilinear elliptic equations in $R ^N$." Mathematica Bohemica 124.2-3 (1999): 149-166. <http://eudml.org/doc/248458>.
@article{Binding1999,
abstract = {We consider the existence of positive solutions of
-pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1)
in $\mathbb \{R\}^N$, where $\lambda , \alpha \in \mathbb \{R\}$, $1<p<N$, $p^*=Np/(N-p)$, the critical Sobolev exponent, and $1<q<p^*$, $q\ne p$. Let $\lambda _1^+>0$ be the principal eigenvalue of
-pu=g(x)|u|p-2u in , g(x)|u|p>0, (2)
with $u_1^+>0$ the associated eigenfunction. We prove that, if $\int _\{\mathbb \{R\}^N\}f|u_1^+|^\{p^*\}<0$, $\int _\{\mathbb \{R\}^N\}h|u_1^+|^q>0$ if $1<q<p$ and $\int _\{\mathbb \{R\}^N\}h|u_1^+|^q<0$ if $p<q<p^*$, then there exist $\lambda ^*>\lambda _1^+$ and $\alpha ^*>0$, such that for $\lambda \in [\lambda _1^+, \lambda ^*)$ and $\alpha \in [0, \alpha ^*)$, (1) has at least one positive solution.},
author = {Binding, Paul A., Drábek, Pavel, Huang, Yin Xi},
journal = {Mathematica Bohemica},
keywords = {positive solutions; critical exponent; the $p$-Laplacian; -Laplacian; positive solutions; critical exponent},
language = {eng},
number = {2-3},
pages = {149-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive solutions of critical quasilinear elliptic equations in $R ^N$},
url = {http://eudml.org/doc/248458},
volume = {124},
year = {1999},
}
TY - JOUR
AU - Binding, Paul A.
AU - Drábek, Pavel
AU - Huang, Yin Xi
TI - Positive solutions of critical quasilinear elliptic equations in $R ^N$
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 149
EP - 166
AB - We consider the existence of positive solutions of
-pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1)
in $\mathbb {R}^N$, where $\lambda , \alpha \in \mathbb {R}$, $1<p<N$, $p^*=Np/(N-p)$, the critical Sobolev exponent, and $1<q<p^*$, $q\ne p$. Let $\lambda _1^+>0$ be the principal eigenvalue of
-pu=g(x)|u|p-2u in , g(x)|u|p>0, (2)
with $u_1^+>0$ the associated eigenfunction. We prove that, if $\int _{\mathbb {R}^N}f|u_1^+|^{p^*}<0$, $\int _{\mathbb {R}^N}h|u_1^+|^q>0$ if $1<q<p$ and $\int _{\mathbb {R}^N}h|u_1^+|^q<0$ if $p<q<p^*$, then there exist $\lambda ^*>\lambda _1^+$ and $\alpha ^*>0$, such that for $\lambda \in [\lambda _1^+, \lambda ^*)$ and $\alpha \in [0, \alpha ^*)$, (1) has at least one positive solution.
LA - eng
KW - positive solutions; critical exponent; the $p$-Laplacian; -Laplacian; positive solutions; critical exponent
UR - http://eudml.org/doc/248458
ER -
References
top- C. O. Alves, Multiple positive solutions for equations involving critical Sobolev exponent in , Electron. J.Differential Equations 13 (1997), 1-10. (1997) MR1461975
- C. O. Alves J. V. Gonçalves O. H. Miyagaki, Remarks on multiplicity of positive solutions for nonlinear elliptic equations in with critical growth, Preprint. MR1720590
- H. Brezis L. Nirenberg, 10.1002/cpa.3160360405, Comm. Pure Appl. Math. 36 (1983), 437-477. (1983) MR0709644DOI10.1002/cpa.3160360405
- P. Drábek Y. X. Huang, Multiple positive solutions of quasilinear elliptic equations in , Nonlinear Anal. To appear. MR1691021
- P. Drábek Y. X. Huang, 10.1006/jdeq.1997.3306, J. Differential Equations 140 (1997), 106-132. (1997) MR1473856DOI10.1006/jdeq.1997.3306
- P. Drábek Y. X. Huang, 10.1090/S0002-9947-97-01788-1, Trans. Amer. Math. Soc. 349 (1997), 171-188. (1997) MR1390979DOI10.1090/S0002-9947-97-01788-1
- J. V. Gonçalves C. O. Alves, Existence of positive solutions for m-Laplacian equations in involving critical Sobolev exponents, Nonlinear Anal. 32 (1998), 53-70. (1998) MR1491613
- P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part I, II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 3, 109-145, 45-121. (1985) MR0850686
- J. Mawhin M. Willem, 10.1007/978-1-4757-2061-7, Appl. Math. Sci. Vol. 74, Springer-Verlag, New York, 1989. (1989) MR0982267DOI10.1007/978-1-4757-2061-7
- E. S. Noussair C. A. Swanson, 10.1006/jmaa.1995.1355, J. Math. Anal. Appl. 195 (1995), 278-293. (195) MR1352823DOI10.1006/jmaa.1995.1355
- E. S. Noussair C. A. Swanson J. Yang, 10.1016/0362-546X(93)90164-N, Nonlinear Anal. 20 (1993), 285-301. (1993) MR1202205DOI10.1016/0362-546X(93)90164-N
- C. A. Swanson L. S. Yu, 10.1007/BF01759355, Ann. Mat. Pura Appl. 169 (1995), 233-250. (1995) MR1378476DOI10.1007/BF01759355
- G. Tarantello, 10.1016/S0294-1449(16)30238-4, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281-304. (1992) MR1168304DOI10.1016/S0294-1449(16)30238-4
- J. Yang, 10.1016/0362-546X(94)00247-F, Nonlinear Anal. 25 (1995), 1283-1306. (1995) Zbl0838.49008MR1355723DOI10.1016/0362-546X(94)00247-F
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.