The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Taylor towers for Γ -modules

Birgit Richter — 2001

Annales de l’institut Fourier

We consider Taylor approximation for functors from the small category of finite pointed sets Γ to modules and give an explicit description for the homology of the layers of the Taylor tower. These layers are shown to be fibrant objects in a suitable closed model category structure. Explicit calculations are presented in characteristic zero including an application to higher order Hochschild homology. A spectral sequence for the homology of the homotopy fibres of this approximation is provided.

Galois theory and Lubin-Tate cochains on classifying spaces

Andrew BakerBirgit Richter — 2011

Open Mathematics

We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r , the cochain extension F ( B C p r + , E n ) F ( E C p r + , E n ) is not a Galois...

Page 1

Download Results (CSV)