Taylor towers for -modules
- [1] Mathematisches Institut der Universität Bonn, Beringsstrasse 1, 53115 Bonn (Germany)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 4, page 995-1023
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRichter, Birgit. "Taylor towers for $\Gamma $-modules." Annales de l’institut Fourier 51.4 (2001): 995-1023. <http://eudml.org/doc/115942>.
@article{Richter2001,
abstract = {We consider Taylor approximation for functors from the small category of finite pointed
sets $\Gamma $ to modules and give an explicit description for the homology of the layers
of the Taylor tower. These layers are shown to be fibrant objects in a suitable closed
model category structure. Explicit calculations are presented in characteristic zero
including an application to higher order Hochschild homology. A spectral sequence for the
homology of the homotopy fibres of this approximation is provided.},
affiliation = {Mathematisches Institut der Universität Bonn, Beringsstrasse 1, 53115 Bonn (Germany)},
author = {Richter, Birgit},
journal = {Annales de l’institut Fourier},
keywords = {Taylor tower; cubical construction; dual of the Steenrod algebra; dual of Steenrod algebra; higher-order Hochschild homology},
language = {eng},
number = {4},
pages = {995-1023},
publisher = {Association des Annales de l'Institut Fourier},
title = {Taylor towers for $\Gamma $-modules},
url = {http://eudml.org/doc/115942},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Richter, Birgit
TI - Taylor towers for $\Gamma $-modules
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 995
EP - 1023
AB - We consider Taylor approximation for functors from the small category of finite pointed
sets $\Gamma $ to modules and give an explicit description for the homology of the layers
of the Taylor tower. These layers are shown to be fibrant objects in a suitable closed
model category structure. Explicit calculations are presented in characteristic zero
including an application to higher order Hochschild homology. A spectral sequence for the
homology of the homotopy fibres of this approximation is provided.
LA - eng
KW - Taylor tower; cubical construction; dual of the Steenrod algebra; dual of Steenrod algebra; higher-order Hochschild homology
UR - http://eudml.org/doc/115942
ER -
References
top- A.K. Bousfield, E.M. Friedlander, Homotopy theory of -spaces, spectra, and bisimplicial sets, 658 (1978), 80-150, Springer Zbl0405.55021
- A. Dold, D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen., Annales de l'Institut Fourier (Grenoble) 11 (1961), 201-312 Zbl0098.36005MR150183
- S. Eilenberg, S. MacLane, Homology theory for multiplicative systems, Transactions of the AMS 71 (1951), 294-330 Zbl0043.25403MR43774
- S. Eilenberg, S. MacLane, On the groups , II, Annals of Mathematics 60 (1954), 49-139 Zbl0055.41704MR65162
- T. Goodwillie, Calculus. I: The first derivative of pseudoisotopy theory Zbl0741.57021MR1076523
- L. Illusie, Complexe cotangent et déformations II, 283 (1972), Springer Zbl0238.13017MR491681
- B. Johnson, R. McCarthy, Taylor towers for functors of additive categories, Journal of Pure and Applied Algebra 137 (1999), 253-284 Zbl0929.18007MR1685140
- B. Johnson, R. McCarthy, Deriving calculus with cotripels, (1999) Zbl1028.18004MR1685140
- M. Jibladze, T. Pirashvili, Cohomology of algebraic theories, Journal of Algebra 137 (1991), 253-296 Zbl0724.18005MR1094244
- W. Lück, Transformation groups and algebraic K-theory, 1408 (1989), Springer Zbl0679.57022MR1027600
- T. Pirashvili, Kan extension and stable homology of Eilenberg and Mac Lane spaces, Topology 35 (1996), 883-886 Zbl0858.55006MR1404915
- T. Pirashvili, Dold-Kan type theorem for -groups, Mathematische Annalen 318 (2000), 277-298 Zbl0963.18006MR1795563
- T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Annales Scientifiques de l'École Normale Supérieure 33 (2000), 151-179 Zbl0957.18004MR1755114
- B. Richter, Dissertation 332 (2000), Universität Bonn Zbl0967.55015
- O. Renaudin, Localisation homotopique et foncteurs entre espaces vectoriels, (janvier 2000)
- P.G. Goerss, J.F. Jardine, Simplicial homotopy theory, (1999), Birhäuser Zbl0949.55001MR1711612
- T. Goodwillie, Calculus. II: Analytic functors Zbl0776.55008MR1162445
- T. Goodwillie, Calculus. III: The Taylor series of a homotopy functor Zbl1067.55006MR2026544
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.